Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Physiol Rev ; 98(4): 1943-1982, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30067157

RESUMO

The homeoprotein family comprises ~300 transcription factors and was long seen as primarily involved in developmental programs through cell autonomous regulation. However, recent evidence reveals that many of these factors are also expressed in the adult where they exert physiological functions not yet fully deciphered. Furthermore, the DNA-binding domain of most homeoproteins contains two signal sequences allowing their secretion and internalization, thus intercellular transfer. This review focuses on this new-found signaling in cell migration, axon guidance, and cerebral cortex physiological homeostasis and speculates on how it may play important roles in early arealization of the neuroepithelium. It also describes the use of homeoproteins as therapeutic proteins in mouse models of diseases affecting the central nervous system, in particular Parkinson disease and glaucoma.


Assuntos
Proteínas de Homeodomínio/fisiologia , Transdução de Sinais/fisiologia , Animais , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/fisiologia , Epitélio/metabolismo , Epitélio/fisiologia , Proteínas de Homeodomínio/metabolismo , Humanos , Fatores de Transcrição/metabolismo
2.
EMBO Rep ; 24(8): e56525, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37534581

RESUMO

Several homeoprotein transcription factors transfer between cells and regulate gene expression, protein translation, and chromatin organization in recipient cells. ENGRAILED-1 is one such homeoprotein expressed in spinal V1 interneurons that synapse on α-motoneurons. Neutralizing extracellular ENGRAILED-1 by expressing a secreted single-chain antibody blocks its capture by spinal motoneurons resulting in α-motoneuron loss and limb weakness. A similar but stronger phenotype is observed in the Engrailed-1 heterozygote mouse, confirming that ENGRAILED-1 exerts a paracrine neurotrophic activity on spinal cord α-motoneurons. Intrathecal injection of ENGRAILED-1 leads to its specific internalization by spinal motoneurons and has long-lasting protective effects against neurodegeneration and weakness. Midbrain dopaminergic neurons express Engrailed-1 and, similarly to spinal cord α-motoneurons, degenerate in the heterozygote. We identify genes expressed in spinal cord motoneurons whose expression changes in mouse Engrailed-1 heterozygote midbrain neurons. Among these, p62/SQSTM1 shows increased expression during aging in spinal cord motoneurons in the Engrailed-1 heterozygote and upon extracellular ENGRAILED-1 neutralization. We conclude that ENGRAILED-1 might regulate motoneuron aging and has non-cell-autonomous neurotrophic activity.


Assuntos
Neurônios Motores , Fatores de Transcrição , Camundongos , Animais , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Neurônios Motores/metabolismo , Medula Espinal/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interneurônios/metabolismo
3.
Cell ; 134(3): 508-20, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18692473

RESUMO

Neural circuits are shaped by experience in early postnatal life. Distinct GABAergic connections within visual cortex determine the timing of the critical period for rewiring ocular dominance to establish visual acuity. We find that maturation of the parvalbumin (PV)-cell network that controls plasticity onset is regulated by a selective re-expression of the embryonic Otx2 homeoprotein. Visual experience promoted the accumulation of non-cell-autonomous Otx2 in PV-cells, and cortical infusion of exogenous Otx2 accelerated both PV-cell development and critical period timing. Conversely, conditional removal of Otx2 from non-PV cells or from the visual pathway abolished plasticity. Thus, the experience-dependent transfer of a homeoprotein may establish the physiological milieu for postnatal plasticity of a neural circuit.


Assuntos
Plasticidade Neuronal , Fatores de Transcrição Otx/metabolismo , Córtex Visual/fisiologia , Animais , Humanos , Interneurônios/fisiologia , Camundongos , Fatores de Transcrição Otx/genética , Parvalbuminas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Privação Sensorial , Vias Visuais
4.
EMBO J ; 37(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29941661

RESUMO

LINE-1 mobile genetic elements have shaped the mammalian genome during evolution. A minority of them have escaped fossilization which, when activated, can threaten genome integrity. We report that LINE-1 are expressed in substantia nigra ventral midbrain dopaminergic neurons, a class of neurons that degenerate in Parkinson's disease. In Engrailed-1 heterozygotes, these neurons show a progressive degeneration that starts at 6 weeks of age, coinciding with an increase in LINE-1 expression. Similarly, DNA damage and cell death, induced by an acute oxidative stress applied to embryonic midbrain neurons in culture or to adult midbrain dopaminergic neurons in vivo, are accompanied by enhanced LINE-1 expression. Reduction of LINE-1 activity through (i) direct transcriptional repression by Engrailed, (ii) a siRNA directed against LINE-1, (iii) the nucleoside analogue reverse transcriptase inhibitor stavudine, and (iv) viral Piwil1 expression, protects against oxidative stress in vitro and in vivo We thus propose that LINE-1 overexpression triggers oxidative stress-induced DNA strand breaks and that an Engrailed adult function is to protect mesencephalic dopaminergic neurons through the repression of LINE-1 expression.


Assuntos
Quebras de DNA , Neurônios Dopaminérgicos/patologia , Proteínas de Homeodomínio/genética , Elementos Nucleotídeos Longos e Dispersos/genética , Estresse Oxidativo/genética , Animais , Proteínas Argonautas/genética , Linhagem Celular , Dano ao DNA/genética , Neurônios Dopaminérgicos/metabolismo , Células HEK293 , Humanos , Camundongos , Camundongos Transgênicos , Interferência de RNA , RNA Interferente Pequeno/genética , Elementos Reguladores de Transcrição/genética , Substância Negra/metabolismo
5.
Mol Psychiatry ; 26(11): 6469-6480, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33963285

RESUMO

The OTX2 homeoprotein transcription factor is expressed in the dopaminergic neurons of the ventral tegmental area, which projects to limbic structures controlling complex behaviors. OTX2 is also produced in choroid plexus epithelium, from which it is secreted into cerebrospinal fluid and transferred to limbic structure parvalbumin interneurons. Previously, adult male mice subjected to early-life stress were found susceptible to anxiety-like behaviors, with accompanying OTX2 expression changes in ventral tegmental area or choroid plexus. Here, we investigated the consequences of reduced OTX2 levels in Otx2 heterozygote mice, as well as in Otx2+/AA and scFvOtx2tg/0 mouse models for decreasing OTX2 transfer from choroid plexus to parvalbumin interneurons. Both male and female adult mice show anxiolysis-like phenotypes in all three models. In Otx2 heterozygote mice, we observed no changes in dopaminergic neuron numbers and morphology in ventral tegmental area, nor in their metabolic output and projections to target structures. However, we found reduced expression of parvalbumin in medial prefrontal cortex, which could be rescued in part by adult overexpression of Otx2 specifically in choroid plexus, resulting in increased anxiety-like behavior. Taken together, OTX2 synthesis by the choroid plexus followed by its secretion into the cerebrospinal fluid is an important regulator of anxiety-related phenotypes in the mouse.


Assuntos
Plexo Corióideo , Fatores de Transcrição Otx , Animais , Ansiedade , Plexo Corióideo/metabolismo , Feminino , Interneurônios/metabolismo , Masculino , Camundongos , Fatores de Transcrição Otx/genética , Fatores de Transcrição Otx/metabolismo , Parvalbuminas/metabolismo
6.
Semin Cell Dev Biol ; 89: 125-135, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30273653

RESUMO

Perineuronal nets (PNNs) in the brain are condensed glycosaminoglycan-rich extracellular matrix structures with heterogeneous composition yet specific organization. They typically assemble around a subset of fast-spiking interneurons that are implicated in learning and memory. Owing to their unique structural organization, PNNs have neuroprotective capacities but also participate in signal transduction and in controlling neuronal activity and plasticity. In this review, we define PNN structure in detail and describe its various biochemical and physiological functions. We further discuss the role of PNNs in brain disorders such as schizophrenia, bipolar disorder, Alzheimer disease and addictions. Lastly, we describe therapeutic approaches that target PNNs to alter brain physiology and counter brain dysfunction.


Assuntos
Encéfalo/fisiologia , Matriz Extracelular/genética , Plasticidade Neuronal/fisiologia , Neurônios/fisiologia , Animais , Encéfalo/patologia , Encefalopatias/fisiopatologia , Humanos , Interneurônios/patologia , Interneurônios/fisiologia , Rede Nervosa/patologia , Rede Nervosa/fisiologia , Neurônios/patologia , Neuroproteção/fisiologia
7.
Int J Mol Sci ; 22(16)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34445655

RESUMO

The choroid plexus is an important blood barrier that secretes cerebrospinal fluid, which essential for embryonic brain development and adult brain homeostasis. The OTX2 homeoprotein is a transcription factor that is critical for choroid plexus development and remains highly expressed in adult choroid plexus. Through RNA sequencing analyses of constitutive and conditional knockdown adult mouse models, we reveal putative functional roles for OTX2 in adult choroid plexus function, including cell signaling and adhesion, and show that OTX2 regulates the expression of factors that are secreted into the cerebrospinal fluid, notably transthyretin. We also show that Otx2 expression impacts choroid plexus immune and stress responses, and affects splicing, leading to changes in the mRNA isoforms of proteins that are implicated in the oxidative stress response and DNA repair. Through mass spectrometry analysis of OTX2 protein partners in the choroid plexus, and in known non-cell-autonomous target regions, such as the visual cortex and subventricular zone, we identify putative targets that are involved in cell adhesion, chromatin structure, and RNA processing. Thus, OTX2 retains important roles for regulating choroid plexus function and brain homeostasis throughout life.


Assuntos
Encéfalo/fisiologia , Plexo Corióideo/metabolismo , Regulação da Expressão Gênica , Homeostase , Ventrículos Laterais/metabolismo , Fatores de Transcrição Otx/fisiologia , Córtex Visual/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Transcriptoma
8.
Cereb Cortex ; 29(6): 2384-2395, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29771284

RESUMO

The non-cell autonomous transfer of OTX2 homeoprotein transcription factor into juvenile mouse cerebral cortex regulates parvalbumin interneuron maturation and critical period timing. By analyzing gene expression in primary visual cortex of wild-type and Otx2+/GFP mice at plastic and nonplastic ages, we identified several putative genes implicated in Otx2-dependent visual cortex plasticity for ocular dominance. Cortical OTX2 infusion in juvenile mice induced Gadd45b/g expression through direct regulation of transcription. Intriguingly, a reverse effect was found in the adult, where reducing cortical OTX2 resulted in Gadd45b/g upregulation. Viral expression of Gadd45b in adult visual cortex directly induced ocular dominance plasticity with concomitant changes in MeCP2 foci within parvalbumin interneurons and in methylation states of several plasticity gene promoters, suggesting epigenetic regulation. This interaction provides a molecular mechanism for OTX2 to trigger critical period plasticity yet suppress adult plasticity.


Assuntos
Antígenos de Diferenciação/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Plasticidade Neuronal/fisiologia , Fatores de Transcrição Otx/metabolismo , Córtex Visual/fisiologia , Animais , Dominância Ocular/fisiologia , Epigênese Genética , Regulação da Expressão Gênica , Interneurônios/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Parvalbuminas/metabolismo
9.
PLoS Genet ; 12(5): e1006035, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27171438

RESUMO

During postnatal life the cerebral cortex passes through critical periods of plasticity allowing its physiological adaptation to the environment. In the visual cortex, critical period onset and closure are influenced by the non-cell autonomous activity of the Otx2 homeoprotein transcription factor, which regulates the maturation of parvalbumin-expressing inhibitory interneurons (PV cells). In adult mice, the maintenance of a non-plastic adult state requires continuous Otx2 import by PV cells. An important source of extra-cortical Otx2 is the choroid plexus, which secretes Otx2 into the cerebrospinal fluid. Otx2 secretion and internalization requires two small peptidic domains that are part of the DNA-binding domain. Thus, mutating these "transfer" sequences also modifies cell autonomous transcription, precluding this approach to obtain a cell autonomous-only mouse. Here, we develop a mouse model with inducible secretion of an anti-Otx2 single-chain antibody to trap Otx2 in the extracellular milieu. Postnatal secretion of this single-chain antibody by PV cells delays PV maturation and reduces plasticity gene expression. Induced adult expression of this single-chain antibody in cerebrospinal fluid decreases Otx2 internalization by PV cells, strongly induces plasticity gene expression and reopens physiological plasticity. We provide the first mammalian genetic evidence for a signaling mechanism involving intercellular transfer of a homeoprotein transcription factor. Our single-chain antibody mouse model is a valid strategy for extracellular neutralization that could be applied to other homeoproteins and signaling molecules within and beyond the nervous system.


Assuntos
Especificidade de Anticorpos/imunologia , Interneurônios/imunologia , Fatores de Transcrição Otx/imunologia , Anticorpos de Cadeia Única/imunologia , Animais , Especificidade de Anticorpos/genética , Córtex Cerebral/imunologia , Córtex Cerebral/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , Camundongos , Plasticidade Neuronal/imunologia , Fatores de Transcrição Otx/genética , Parvalbuminas/biossíntese , Transdução de Sinais , Anticorpos de Cadeia Única/genética , Córtex Visual/imunologia , Córtex Visual/metabolismo
10.
Development ; 142(10): 1860-8, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25968317

RESUMO

Boundary formation in the developing neuroepithelium decides on the position and size of compartments in the adult nervous system. In this study, we start from the French Flag model proposed by Lewis Wolpert, in which boundaries are formed through the combination of morphogen diffusion and of thresholds in cell responses. In contemporary terms, a response is characterized by the expression of cell-autonomous transcription factors, very often of the homeoprotein family. Theoretical studies suggest that this sole mechanism results in the formation of boundaries of imprecise shapes and positions. Alan Turing, on the other hand, proposed a model whereby two morphogens that exhibit self-activation and reciprocal inhibition, and are uniformly distributed and diffuse at different rates lead to the formation of territories of unpredictable shapes and positions but with sharp boundaries (the 'leopard spots'). Here, we have combined the two models and compared the stability of boundaries when the hypothesis of local homeoprotein intercellular diffusion is, or is not, introduced in the equations. We find that the addition of homeoprotein local diffusion leads to a dramatic stabilization of the positioning of the boundary, even when other parameters are significantly modified. This novel Turing/Wolpert combined model has thus important theoretical consequences for our understanding of the role of the intercellular diffusion of homeoproteins in the developmental robustness of and the changes that take place in the course of evolution.


Assuntos
Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Modelos Teóricos , Estabilidade Proteica
13.
Hum Mol Genet ; 23(7): 1742-53, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24234651

RESUMO

In the human, mutations of OTX2 (Orthodenticle homeobox 2 transcription factor) translate into eye malformations of variable expressivity (even between the two eyes of the same individual) and incomplete penetrance, suggesting the existence of subtle thresholds in OTX2 activity. We have addressed this issue by analyzing retinal structure and function in six mutant mice with graded Otx2 activity: Otx2(+/+), Otx2(+/AA), Otx2(+/GFP), Otx2(AA/AA), Otx2(AA/GFP) and Otx2(GFP/GFP). Null mice (Otx2(GFP/GFP)) fail to develop the head and are embryonic lethal, and compound heterozygous Otx2(AA/GFP) mice show a truncated head and die at birth. All other genotypes develop until adulthood. We analyzed eye structure and visual physiology in the genotypes that develop until adulthood and report that phenotype severity parallels Otx2 activity. Otx2(+/AA) are only mildly affected whereas Otx2(+/GFP) are more affected than Otx2(+/AA) but less than Otx2(AA/AA) mice. Otx2(AA/AA) mice later manifest the most severe defects, with variable expressivity. Electrophysiological and histological analyses of the mouse retina revealed progressive death of bipolar cells and cone photoreceptors that is both Otx2 activity- and age-dependent with the same ranking of phenotypic severity. This study demonstrates the importance of gene dosage in the development of age-dependent pathologies and underscores the fact that small gene dosage differences can cause significant pathological states.


Assuntos
Anormalidades do Olho/genética , Fatores de Transcrição Otx/genética , Células Bipolares da Retina/citologia , Células Fotorreceptoras Retinianas Cones/citologia , Células Horizontais da Retina/citologia , Animais , Diferenciação Celular/genética , Linhagem Celular , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Penetrância , Acuidade Visual/genética
14.
Neural Plast ; 2016: 7931693, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881132

RESUMO

The ability of the environment to shape cortical function is at its highest during critical periods of postnatal development. In the visual cortex, critical period onset is triggered by the maturation of parvalbumin inhibitory interneurons, which gradually become surrounded by a specialized glycosaminoglycan-rich extracellular matrix: the perineuronal nets. Among the identified factors regulating cortical plasticity in the visual cortex, extracortical homeoprotein Otx2 is transferred specifically into parvalbumin interneurons and this transfer regulates both the onset and the closure of the critical period of plasticity for binocular vision. Here, we review the interaction between the complex sugars of the perineuronal nets and homeoprotein Otx2 and how this interaction regulates cortical plasticity during critical period and in adulthood.


Assuntos
Período Crítico Psicológico , Matriz Extracelular/fisiologia , Plasticidade Neuronal , Fatores de Transcrição Otx/fisiologia , Córtex Visual/fisiologia , Animais , Proteínas da Matriz Extracelular/fisiologia , Humanos , Interneurônios/metabolismo , Interneurônios/fisiologia , Parvalbuminas/metabolismo , Córtex Visual/crescimento & desenvolvimento
15.
Neural Plast ; 2016: 6097107, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26881122

RESUMO

A number of transcription factors, including En1/2, Foxa1/2, Lmx1a/b, Nurr1, Otx2, and Pitx3, with key roles in midbrain dopaminergic (mDA) neuron development, also regulate adult mDA neuron survival and physiology. Mouse models with targeted disruption of some of these genes display several features reminiscent of Parkinson disease (PD), in particular the selective and progressive loss of mDA neurons in the substantia nigra pars compacta (SNpc). The characterization of these animal models has provided valuable insights into various mechanisms of PD pathogenesis. Therefore, the dissection of the mechanisms and survival signalling pathways engaged by these transcription factors to protect mDA neuron from degeneration can suggest novel therapeutic strategies. The work on En1/2-mediated neuroprotection also highlights the potential of protein transduction technology for neuroprotective approaches in PD.


Assuntos
Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Doença de Parkinson/genética , Fatores de Transcrição/genética , Animais , Mesencéfalo/metabolismo , Camundongos , Doença de Parkinson/metabolismo , Parte Compacta da Substância Negra/metabolismo , Transdução de Sinais
16.
Pharmacol Rev ; 65(1): 90-104, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23300132

RESUMO

Homeoproteins constitute a major class of transcription factors active throughout development and in adulthood. Their membrane transduction properties were discovered over 20 years ago, opening an original field of research in the domain of vector peptides and signal transduction. In early development, homeoprotein transfer participates in tissue patterning, cell/axon guidance, and migration. In the axon guidance model, homeoproteins exert their non-cell autonomous activity through the regulation of translation, in particular, that of nuclear-transcribed mitochondrial mRNAs. An important aspect of these studies on patterning and migration is that homeoproteins sensitize the cells to the action of other growth factors, thus cooperating with established signaling pathways. The role of homeoprotein signaling at later developmental stages is also of interest. In particular, the transfer of homeoprotein Otx2 into parvalbumin-expressing inhibitory neurons (PV-cells) in the visual cortex regulates cortical plasticity. The molecular deciphering of the interaction of Otx2 with binding sites at the surface of PV-cells has allowed the development of a specific Otx2 antagonist that reopens plasticity in the adult cortex and cures mice from experimental amblyopia, a neurodevelopmental disease. Finally, the use of homeoproteins as therapeutic proteins in mouse models of glaucoma and Parkinson disease is reviewed. In the latter case, engrailed homeoproteins protect mesencephalic dopaminergic neurons by increasing the local translation of complex I mitochondrial mRNAs. In conclusion, this review synthesizes 20 years of work on the fundamental and potentially translational aspects of homeoprotein signaling.


Assuntos
Proteínas de Homeodomínio/fisiologia , Animais , Axônios/fisiologia , Proteínas de Transporte/metabolismo , Movimento Celular , Peptídeos Penetradores de Células , Plasticidade Neuronal , Transdução de Sinais , Córtex Visual/fisiologia
17.
Neurobiol Dis ; 73: 70-82, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25281317

RESUMO

Current research on Parkinson's disease (PD) pathogenesis requires relevant animal models that mimic the gradual and progressive development of neuronal dysfunction and degeneration that characterizes the disease. Polymorphisms in engrailed 1 (En1), a homeobox transcription factor that is crucial for both the development and survival of mesencephalic dopaminergic neurons, are associated with sporadic PD. This suggests that En1 mutant mice might be a promising candidate PD model. Indeed, a mouse that lacks one En1 allele exhibits decreased mitochondrial complex I activity and progressive midbrain dopamine neuron degeneration in adulthood, both features associated with PD. We aimed to further characterize the disease-like phenotype of these En1(+/-) mice with a focus on early neurodegenerative changes that can be utilized to score efficacy of future disease modifying studies. We observed early terminal defects in the dopaminergic nigrostriatal pathway in En1(+/-) mice. Several weeks before a significant loss of dopaminergic neurons in the substantia nigra could be detected, we found that striatal terminals expressing high levels of dopaminergic neuron markers TH, VMAT2, and DAT were dystrophic and swollen. Using transmission electron microscopy, we identified electron dense bodies consistent with abnormal autophagic vacuoles in these terminal swellings. In line with these findings, we detected an up-regulation of the mTOR pathway, concurrent with a downregulation of the autophagic marker LC3B, in ventral midbrain and nigral dopaminergic neurons of the En1(+/-) mice. This supports the notion that autophagic protein degradation is reduced in the absence of one En1 allele. We imaged the nigrostriatal pathway using the CLARITY technique and observed many fragmented axons in the medial forebrain bundle of the En1(+/-) mice, consistent with axonal maintenance failure. Using in vivo electrochemistry, we found that nigrostriatal terminals in the dorsal striatum were severely deficient in dopamine release and reuptake. Our findings support a progressive retrograde degeneration of En1(+/-) nigrostriatal neurons, akin to what is suggested to occur in PD. We suggest that using the En1(+/-) mice as a model will provide further key insights into PD pathogenesis, and propose that axon terminal integrity and function can be utilized to estimate dopaminergic neuron health and efficacy of experimental PD therapies.


Assuntos
Corpo Estriado/metabolismo , Corpo Estriado/patologia , Proteínas de Homeodomínio/genética , Degeneração Neural/etiologia , Doença de Parkinson , Substância Negra/patologia , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Animais , Autofagia/genética , Modelos Animais de Doenças , Progressão da Doença , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Neurônios Dopaminérgicos/ultraestrutura , Regulação da Expressão Gênica/genética , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Ácido Homovanílico/metabolismo , Camundongos , Camundongos Transgênicos , Doença de Parkinson/complicações , Doença de Parkinson/genética , Doença de Parkinson/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Substância Negra/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/genética , Tirosina 3-Mono-Oxigenase/metabolismo
18.
Development ; 139(1): 215-24, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22147955

RESUMO

Engrailed 1 and engrailed 2 homeoprotein transcription factors (collectively Engrailed) display graded expression in the chick optic tectum where they participate in retino-tectal patterning. In vitro, extracellular Engrailed guides retinal ganglion cell (RGC) axons and synergises with ephrin A5 to provoke the collapse of temporal growth cones. In vivo disruption of endogenous extracellular Engrailed leads to misrouting of RGC axons. Here we characterise the signalling pathway of extracellular Engrailed. Our results show that Engrailed/ephrin A5 synergy in growth cone collapse involves adenosine A1 receptor activation after Engrailed-dependent ATP synthesis, followed by ATP secretion and hydrolysis to adenosine. This is, to our knowledge, the first evidence for a role of the adenosine A1 receptor in axon guidance. Based on these results, together with higher expression of the adenosine A1 receptor in temporal than nasal growth cones, we propose a computational model that illustrates how the interaction between Engrailed, ephrin A5 and adenosine could increase the precision of the retinal projection map.


Assuntos
Efrina-A5/metabolismo , Cones de Crescimento/metabolismo , Proteínas de Homeodomínio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Receptor A1 de Adenosina/metabolismo , Retina/embriologia , Transdução de Sinais/fisiologia , Trifosfato de Adenosina/metabolismo , Animais , Western Blotting , Embrião de Galinha , Imunofluorescência , Microscopia de Fluorescência , Modelos Biológicos , Proteômica , Retina/metabolismo
19.
Development ; 138(11): 2315-23, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21558379

RESUMO

Homeodomain transcription factors classically exert their morphogenetic activities through the cell-autonomous regulation of developmental programs. In vertebrates, several homeoproteins have also been shown to have direct non-cell-autonomous activities in the developing nervous system. We present the first in vivo evidence for homeoprotein signaling in Drosophila. Focusing on wing development as a model, we first demonstrate that the homeoprotein Engrailed (En) is secreted. Using single-chain anti-En antibodies expressed under the control of a variety of promoters, we delineate the wing territories in which secreted En acts. We show that En is a short-range signaling molecule that participates in anterior crossvein development, interacting with the Dpp signaling pathway. This report thus suggests that direct signaling with homeoproteins is an evolutionarily conserved phenomenon that is not restricted to neural tissues and involves interactions with bona fide signal transduction pathways.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Proteínas de Homeodomínio/metabolismo , Fatores de Transcrição/metabolismo , Asas de Animais/embriologia , Animais , Animais Geneticamente Modificados , Anticorpos , Drosophila/genética , Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Proteínas de Homeodomínio/imunologia , Humanos , Transdução de Sinais , Fatores de Transcrição/imunologia , Asas de Animais/metabolismo
20.
Development ; 138(22): 4991-5001, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22028031

RESUMO

Homeoprotein transcription factors play fundamental roles in development, ranging from embryonic polarity to cell differentiation and migration. Research in recent years has underscored the physiological importance of homeoprotein intercellular transfer in eye field development, axon guidance and retino-tectal patterning, and visual cortex plasticity. Here, we have used the embryonic chick neural tube to investigate a possible role for homeoprotein Pax6 transfer in oligodendrocyte precursor cell (OPC) migration. We report the extracellular expression of Pax6 and the effects of gain and loss of extracellular Pax6 activity on OPCs. Open book cultures with recombinant Pax6 protein or Pax6 blocking antibodies, as well as in ovo gene transfer experiments involving expression of secreted Pax6 protein or secreted Pax6 antibodies, provide converging evidences that OPC migration is promoted by extracellular Pax6. The paracrine effect of Pax6 on OPC migration is thus a new example of direct non-cell autonomous homeoprotein activity.


Assuntos
Movimento Celular/genética , Proteínas do Olho/fisiologia , Proteínas de Homeodomínio/fisiologia , Tubo Neural/embriologia , Oligodendroglia/fisiologia , Fatores de Transcrição Box Pareados/fisiologia , Comunicação Parácrina , Proteínas Repressoras/fisiologia , Animais , Animais Geneticamente Modificados , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Embrião de Galinha , Espaço Extracelular/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Proteínas do Olho/farmacologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Tubo Neural/citologia , Tubo Neural/metabolismo , Tubo Neural/fisiologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Fator de Transcrição PAX6 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Fatores de Transcrição Box Pareados/farmacologia , Comunicação Parácrina/fisiologia , Transporte Proteico/genética , Transporte Proteico/fisiologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Proteínas Repressoras/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/metabolismo , Células-Tronco/fisiologia , Especificidade por Substrato , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA