RESUMO
BACKGROUND: The development of drug resistance and high mortality rates are the major problems observed in non-small cell lung cancer (NSCLC). Biomarkers indicating and predicting disease development towards these unfavorable directions are therefore on high demand. Many studies have demonstrated that changes in miRNAs expression may be associated with a response to treatment and disease prognosis, thus suggesting its potential biomarker value for a broad spectrum of clinical applications. The aim of the present study was to investigate the expression level of miR-181a-5p, miR-630, and its targets in NSCLC tumor tissue and plasma samples; and to analyze its association with NSCLC patient's response to treatment and disease prognosis. METHODS: The study was performed in 89 paired tissue specimens and plasma samples obtained from NSCLC patients who underwent surgical treatment at the Department of Thoracic Surgery and Oncology of the National Cancer Institute. Analysis of miR-181a-5p and miR-630 expression was performed by qRT-PCR using TaqMan miRNA specific primers. Whereas BCL2, LMO3, PTEN, SNAI2, WIF1 expression levels were identified with KAPA SYBR FAST qPCR Kit. Each sample was examined in triplicate and calculated following the 2-ΔΔCt method. When the p-value was less than 0.05, the differences were considered statistically significant. RESULTS: It was found that miR-181a-5p and miR-630 expression levels in NSCLC tissue and plasma samples were significantly decreased compared with control samples. Moreover, patients with low miR-181a-5p expression in tumor tissue and plasma had longer PFS rates than those with high miRNA expression. Decreased miR-630 expression in tumor was statistically significantly associated with better NSCLC patients' OS. In addition, the expression of miR-181a-5p, as well as miR-630 in tumor tissue, are the statistically significant variables for NSCLC patients' OS. Moreover, in NSCLC patient plasma samples circulating miR-181a-5p can be evaluated as significant independent prognostic factors for OS and PFS. CONCLUSIONS: Our findings indicate the miR-181a-5p and miR-630 expression levels have the potential to prognose and predict and therefore improve the treatment individualization and the outcome of NSCLC patients. Circulating miR-181a-5p has the potential clinical value as a non-invasive biomarker for NSCLC.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/genética , MicroRNAs/genética , Biomarcadores TumoraisRESUMO
Drug combination is considered to be the cornerstone of cancer treatment. Simultaneous administration of two or more drugs but at lower doses not only increases cytotoxic effects on tumor cells, but also reduces side effects and possibly overcomes drug resistance. Salinomycin is a well-known cancer stem cell killer, and dichloroacetate is a pyruvate dehydrogenase kinase inhibitor that exclusively targets cells with altered mitochondrial activity, a characteristic being common to most of the cancer cells. In our recent study, we have demonstrated that salinomycin exerted a cytotoxic effect on colorectal carcinoma cells in the 2D and 3D cultures and provided evidence that the mechanism of their synergy was mediated by dichloroacetate-dependent inhibition of the activity of multidrug resistance proteins. In the current work, we confirmed the synergistic cytotoxic properties of salinomycin and dichloroacetate in the 2D and 3D cultures of Lewis lung carcinoma (LLC1) cells. To verify if a synergistic effect of these compounds persisted in vivo, we performed series of experiments using a syngeneic LLC1-C57BL/6 mouse model and demonstrated that combination therapy with salinomycin and DCA increased the survival rate of allografted mice, inhibited metastatic site formation and reduced the populations of cancer stem cells as well as cells that underwent the epithelial-to-mesenchymal transition. Our results demonstrate that a synergistic effect of salinomycin and dichloroacetate exists not only in vitro but also in vivo and suggest their benefits in the treatment of metastatic cancers.