Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 599(7886): 594-598, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34819678

RESUMO

Light-emitting diodes (LEDs) based on perovskite quantum dots have shown external quantum efficiencies (EQEs) of over 23% and narrowband emission, but suffer from limited operating stability1. Reduced-dimensional perovskites (RDPs) consisting of quantum wells (QWs) separated by organic intercalating cations show high exciton binding energies and have the potential to increase the stability and the photoluminescence quantum yield2,3. However, until now, RDP-based LEDs have exhibited lower EQEs and inferior colour purities4-6. We posit that the presence of variably confined QWs may contribute to non-radiative recombination losses and broadened emission. Here we report bright RDPs with a more monodispersed QW thickness distribution, achieved through the use of a bifunctional molecular additive that simultaneously controls the RDP polydispersity while passivating the perovskite QW surfaces. We synthesize a fluorinated triphenylphosphine oxide additive that hydrogen bonds with the organic cations, controlling their diffusion during RDP film deposition and suppressing the formation of low-thickness QWs. The phosphine oxide moiety passivates the perovskite grain boundaries via coordination bonding with unsaturated sites, which suppresses defect formation. This results in compact, smooth and uniform RDP thin films with narrowband emission and high photoluminescence quantum yield. This enables LEDs with an EQE of 25.6% with an average of 22.1 ±1.2% over 40 devices, and an operating half-life of two hours at an initial luminance of 7,200 candela per metre squared, indicating tenfold-enhanced operating stability relative to the best-known perovskite LEDs with an EQE exceeding 20%1,4-6.

2.
Nature ; 570(7759): 96-101, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31118515

RESUMO

The stability of solution-processed semiconductors remains an important area for improvement on their path to wider deployment. Inorganic caesium lead halide perovskites have a bandgap well suited to tandem solar cells1 but suffer from an undesired phase transition near room temperature2. Colloidal quantum dots (CQDs) are structurally robust materials prized for their size-tunable bandgap3; however, they also require further advances in stability because they are prone to aggregation and surface oxidization at high temperatures as a consequence of incomplete surface passivation4,5. Here we report 'lattice-anchored' hybrid materials that combine caesium lead halide perovskites with lead chalcogenide CQDs, in which lattice matching between the two materials contributes to a stability exceeding that of the constituents. We find that CQDs keep the perovskite in its desired cubic phase, suppressing the transition to the undesired lattice-mismatched phases. The stability of the CQD-anchored perovskite in air is enhanced by an order of magnitude compared with pristine perovskite, and the material remains stable for more than six months at ambient conditions (25 degrees Celsius and about 30 per cent humidity) and more than five hours at 200 degrees Celsius. The perovskite prevents oxidation of the CQD surfaces and reduces the agglomeration of the nanoparticles at 100 degrees Celsius by a factor of five compared with CQD controls. The matrix-protected CQDs show a photoluminescence quantum efficiency of 30 per cent for a CQD solid emitting at infrared wavelengths. The lattice-anchored CQD:perovskite solid exhibits a doubling in charge carrier mobility as a result of a reduced energy barrier for carrier hopping compared with the pure CQD solid. These benefits have potential uses in solution-processed optoelectronic devices.

3.
Phys Rev Lett ; 131(5): 053603, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37595234

RESUMO

Solid-state single-photon emitters (SPEs) are quantum light sources that combine atomlike optical properties with solid-state integration and fabrication capabilities. SPEs are hindered by spectral diffusion, where the emitter's surrounding environment induces random energy fluctuations. Timescales of spectral diffusion span nanoseconds to minutes and require probing single emitters to remove ensemble averaging. Photon correlation Fourier spectroscopy (PCFS) can be used to measure time-resolved single emitter line shapes, but is hindered by poor signal-to-noise ratio in the measured correlation functions at early times due to low photon counts. Here, we develop a framework to simulate PCFS correlation functions directly from diffusing spectra that match well with experimental data for single colloidal quantum dots. We use these simulated datasets to train a deep ensemble autoencoder machine learning model that outputs accurate, noiseless, and probabilistic reconstructions of the noisy correlations. Using this model, we obtain reconstructed time-resolved single dot emission line shapes at timescales as low as 10 ns, which are otherwise completely obscured by noise. This enables PCFS to extract optical coherence times on the same timescales as Hong-Ou-Mandel two-photon interference, but with the advantage of providing spectral information in addition to estimates of photon indistinguishability. Our machine learning approach is broadly applicable to different photon correlation spectroscopy techniques and SPE systems, offering an enhanced tool for probing single emitter line shapes on previously inaccessible timescales.

4.
Nat Mater ; 19(4): 412-418, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32042078

RESUMO

The composition of perovskite has been optimized combinatorially such that it often contains six components (AxByC1-x-yPbXzY3-z) in state-of-art perovskite solar cells. Questions remain regarding the precise role of each component, and the lack of a mechanistic explanation limits the practical exploration of the large and growing chemical space. Here, aided by transient photoluminescence microscopy, we find that, in perovskite single crystals, carrier diffusivity is in fact independent of composition. In polycrystalline thin films, the different compositions play a crucial role in carrier diffusion. We report that methylammonium (MA)-based films show a high carrier diffusivity of 0.047 cm2 s-1, while MA-free mixed caesium-formamidinium (CsFA) films exhibit an order of magnitude lower diffusivity. Elemental composition studies show that CsFA grains display a graded composition. This curtails electron diffusion in these films, as seen in both vertical carrier transport and surface potential studies. Incorporation of MA leads to a uniform grain core-to-edge composition, giving rise to a diffusivity of 0.034 cm2 s-1 in CsMAFA films. A model that invokes competing crystallization processes allows us to account for this finding, and suggests further strategies to achieve homogeneous crystallization for the benefit of perovskite optoelectronics.

5.
Nano Lett ; 20(5): 3694-3702, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32227970

RESUMO

Increasing the power conversion efficiency (PCE) of colloidal quantum dot (CQD) solar cells has relied on improving the passivation of CQD surfaces, enhancing CQD coupling and charge transport, and advancing device architecture. The presence of hydroxyl groups on the nanoparticle surface, as well as dimers-fusion between CQDs-has been found to be the major source of trap states, detrimental to optoelectronic properties and device performance. Here, we introduce a CQD reconstruction step that decreases surface hydroxyl groups and dimers simultaneously. We explored the dynamic interaction of charge carriers between band-edge states and trap states in CQDs using time-resolved spectroscopy, showing that trap to ground-state recombination occurs mainly from surface defects in coupled CQD solids passivated using simple metal halides. Using CQD reconstruction, we demonstrate a 60% reduction in trap density and a 25% improvement in charge diffusion length. These translate into a PCE of 12.5% compared to 10.9% for control CQDs.

6.
Nano Lett ; 20(7): 5284-5291, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32543860

RESUMO

Shortwave infrared colloidal quantum dots (SWIR-CQDs) are semiconductors capable of harvesting across the AM1.5G solar spectrum. Today's SWIR-CQD solar cells rely on spin-coating; however, these films exhibit cracking once thickness exceeds ∼500 nm. We posited that a blade-coating strategy could enable thick QD films. We developed a ligand exchange with an additional resolvation step that enabled the dispersion of SWIR-CQDs. We then engineered a quaternary ink that combined high-viscosity solvents with short QD stabilizing ligands. This ink, blade-coated over a mild heating bed, formed micron-thick SWIR-CQD films. These SWIR-CQD solar cells achieved short-circuit current densities (Jsc) that reach 39 mA cm-2, corresponding to the harvest of 60% of total photons incident under AM1.5G illumination. External quantum efficiency measurements reveal both the first exciton peak and the closest Fabry-Perot resonance peak reaching approximately 80%-this is the highest unbiased EQE reported beyond 1400 nm in a solution-processed semiconductor.

7.
Angew Chem Int Ed Engl ; 59(33): 13977-13983, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32383242

RESUMO

The insertion of large organic cations in metal halide perovskites with reduced-dimensional (RD) crystal structures increases crystal formation energy and regulates the growth orientation of the inorganic domains. However, the power conversion performance is curtailed by the insulating nature of the bulky cations. Now a series of RD perovskites with 2-thiophenmethylammonium (TMA) as the intercalating cation are investigated. Compared with traditional ligands, TMA demonstrates improved electron transfer in the inorganic framework. TMA modifies the near-band-edge integrity of the RD perovskite, improving hole transport. A power conversion efficiency of 19 % is achieved, the highest to date for TMA-based RD perovskite photovoltaics; these TMA devices provide a 12 % relative increase in PCE compared to control RD perovskite devices that use PEA as the intercalating ligand, a result of the improved charge transfer from the inorganic layer to the organic ligands.

8.
J Am Chem Soc ; 141(34): 13459-13467, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31366193

RESUMO

Two-dimensional (2D) and quasi-2D perovskite materials have enabled advances in device performance and stability relevant to a number of optoelectronic applications. However, the alignment among the bands of these variably quantum confined materials remains a controversial topic: there exist multiple experimental reports supporting type-I, and also others supporting type-II, band alignment among the reduced-dimensional grains. Here we report a combined computational and experimental study showing that variable ligand concentration on grain surfaces modulates the surface charge density among neighboring quantum wells. Density functional theory calculations and ultraviolet photoelectron spectroscopy reveal that the effective work function of a given quantum well can be varied by modulating the density of ligands at the interface. These induce type-II interfaces in otherwise type-I aligned materials. By treating 2D perovskite films, we find that the effective work function can indeed be shifted down by up to 1 eV. We corroborate the model via a suite of pump-probe transient absorption experiments: these manifest charge transfer consistent with a modulation in band alignment of at least 200 meV among neighboring grains. The findings shed light on perovskite 2D band alignment and explain contrasting behavior of quasi-2D materials in light-emitting diodes (LEDs) and photovoltaics (PV) in the literature, where materials can exhibit either type-I or type-II interfaces depending on the ligand concentration at neighboring surfaces.

9.
J Am Chem Soc ; 141(36): 14180-14189, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31422664

RESUMO

The deployment of perovskite solar cells will rely on further progress in the operating and ambient stability of active layers and interfaces within these materials. Low-dimensional perovskites, also known as perovskite quantum wells (PQWs), utilize organic ligands to protect the perovskite lattice from degradation and offer to improve device stability; combining 2D and 3D perovskites in heterostructures has been shown to take advantage of the high efficiency of the majority 3D active layers and combine it with the improved stability of a thin 2D top layer. Prior PQWs have relied on relatively weak interwell van der Waals bonding between hydrophobic organic moieties of the ligands. Here we instead use the ligand 4-vinylbenzylammonium to form well-ordered PQWs atop a 3D perovskite layer. The ligand's vinyl group is activated using UV light which photochemically forms new covalent bonds among PQWs. UV-cross-linked 2D/3D devices show improved operational stability as well as improved long-term dark stability in air: they retain 90% of their initial efficiency after 2300 h of dark aging compared to a retention of 20% of performance in the case of 3D films. The UV-cross-linked PQWs and 2D/3D interfaces reduce device hysteresis and improve the open-circuit voltages to values up to 1.20 V, resulting in more efficient devices (PCE of up to 20.4%). This work highlights the exploitation of the chemical reactivity of PQW ligands to tailor the molecular properties of PQW interfaces for improved stability and performance in 2D/3D perovskite photovoltaics.

10.
J Am Chem Soc ; 141(20): 8296-8305, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31055917

RESUMO

Metal halide perovskites exhibit outstanding optoelectronic properties: superior charge carrier mobilities, low densities of deep trap states, high photoluminescence quantum yield, and wide color tunability. The introduction of dopant ions provides pathways to manipulate the electronic and chemical features of perovskites. In metal halide perovskites ABX3, where A is a monovalent cation (e.g., methylammonium (MA+), Cs+), B is the divalent metal ion(s) (e.g., Pb2+, Sn2+), and X is the halide group (e.g., Cl-, Br-, or I-), the isovalent exchange of A- and X-site ions has been widely accomplished; in contrast, strategies to exchange B-site cations are underexamined. The activation energies for vacancy-mediated diffusion of B-site cations are much higher than those for A- and X-sites, leading to slow doping processes and low doping ratios. Herein we demonstrate a new method that exchanges B-site cations in perovskites. We design a series of metal carboxylate solutions that anchor on the perovskite surface, allowing fast and efficient doping of B-sites with both homovalent and heterovalent cations (e.g., Sn2+, Zn2+, Bi3+) at room temperature. The doping process in the reduced-dimensional perovskites is complete within 1 min, whereas a similar reaction only leads to the surface attachment of dopant ions in three-dimensional structures. We offer a model based on ammonium extraction and surface ion-pair substitution.

11.
Nat Mater ; 17(10): 900-907, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202112

RESUMO

Reduced-dimensional metal halide perovskites (RDPs) have attracted significant attention in recent years due to their promising light harvesting and emissive properties. We sought to increase the systematic understanding of how RDPs are formed. Here we report that layered intermediate complexes formed with the solvent provide a scaffold that facilitates the nucleation and growth of RDPs during annealing, as observed via in situ X-ray scattering. Transient absorption spectroscopy of RDP single crystals and films enables the identification of the distribution of quantum well thicknesses. These insights allow us to develop a kinetic model of RDP formation that accounts for the experimentally observed size distribution of wells. RDPs exhibit a thickness distribution (with sizes that extend above n = 5) determined largely by the stoichiometric proportion between the intercalating cation and solvent complexes. The results indicate a means to control the distribution, composition and orientation of RDPs via the selection of the intercalating cation, the solvent and the deposition technique.

12.
Nano Lett ; 18(11): 7052-7059, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30359524

RESUMO

Quantum dots (QDs) are promising candidates for solution-processed thin-film optoelectronic devices. Both the diffusion length and the mobility of photoexcited charge carriers in QD solids are critical determinants of solar cell performance; yet various techniques offer diverse values of these key parameters even in notionally similar films. Here we report diffusion lengths and interdot charge transfer rates using a 3D donor/acceptor technique that directly monitors the rate at which photoexcitations reach small-bandgap dot inclusions having a known spacing within a larger-bandgap QD matrix. Instead of relying on photoluminescence (which can be weak in strongly coupled QD solids), we use ultrafast transient absorption spectroscopy, a method where sensitivity is undiminished by exciton dissociation. We measure record diffusion lengths of ∼300 nm in metal halide exchanged PbS QD solids that have led to power conversion efficiencies of 12%, and determine 8 ps interdot hopping of carriers following photoexcitation, among the fastest rates reported for PbS QD solids. We also find that QD solids composed of smaller QDs ( d = ∼3.2 nm) exhibit 5 times faster interdot charge transfer rates and 10 times lower trap state densities compared to larger ( d = ∼5.5 nm) QDs.

13.
Nano Lett ; 18(7): 4417-4423, 2018 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-29912564

RESUMO

Colloidal quantum dots (CQDs) are promising solution-processed infrared-absorbing materials for optoelectronics. In these applications, it is crucial to replace the electrically insulating ligands used in synthesis to form strongly coupled quantum dot solids. Recently, solution-phase ligand-exchange strategies have been reported that minimize the density of defects and the polydispersity of CQDs; however, we find herein that the new ligands exhibit insufficient chemical reactivity to remove original oleic acid ligands completely. This leads to low CQD packing and correspondingly low electronic performance. Here we report an acid-assisted solution-phase ligand-exchange strategy that, by enabling efficient removal of the original ligands, enables the synthesis of densified CQD arrays. Our use of hydroiodic acid simultaneously facilitates high CQD packing via proton donation and CQD passivation through iodine. We demonstrate highly packed CQD films with a 2.5 times increased carrier mobility compared with prior exchanges. The resulting devices achieve the highest infrared photon-to-electron conversion efficiencies (>50%) reported in the spectral range of 0.8 to 1.1 eV.

14.
J Am Chem Soc ; 140(8): 2890-2896, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29397693

RESUMO

Metal halide perovskites have achieved photovoltaic efficiencies exceeding 22%, but their widespread use is hindered by their instability in the presence of water and oxygen. To bolster stability, researchers have developed low-dimensional perovskites wherein bulky organic ligands terminate the perovskite lattice, forming quantum wells (QWs) that are protected by the organic layers. In thin films, the width of these QWs exhibits a distribution that results in a spread of bandgaps in the material arising due to varying degrees of quantum confinement across the population. Means to achieve refined control over this QW width distribution, and to examine and understand its influence on photovoltaic performance, are therefore of intense interest. Here we show that moving to the ligand allylammonium enables a narrower distribution of QW widths, creating a flattened energy landscape that leads to ×1.4 and ×1.9 longer diffusion lengths for electrons and holes, respectively. We attribute this to reduced ultrafast shallow hole trapping that originates from the most strongly confined QWs. We observe an increased PCE of 14.4% for allylammonium-based perovskite QW photovoltaics, compared to 11-12% PCEs obtained for analogous devices using phenethylammonium and butylammonium ligands. We then optimize the devices using mixed-cation strategies, achieving 16.5% PCE for allylammonium devices. The devices retain 90% of their initial PCEs after >650 h when stored under ambient atmospheric conditions.

15.
J Am Chem Soc ; 140(36): 11378-11386, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30113834

RESUMO

The electrochemical carbon dioxide reduction reaction (CO2RR) produces diverse chemical species. Cu clusters with a judiciously controlled surface coordination number (CN) provide active sites that simultaneously optimize selectivity, activity, and efficiency for CO2RR. Here we report a strategy involving metal-organic framework (MOF)-regulated Cu cluster formation that shifts CO2 electroreduction toward multiple-carbon product generation. Specifically, we promoted undercoordinated sites during the formation of Cu clusters by controlling the structure of the Cu dimer, the precursor for Cu clusters. We distorted the symmetric paddle-wheel Cu dimer secondary building block of HKUST-1 to an asymmetric motif by separating adjacent benzene tricarboxylate moieties using thermal treatment. By varying materials processing conditions, we modulated the asymmetric local atomic structure, oxidation state and bonding strain of Cu dimers. Using electron paramagnetic resonance (EPR) and in situ X-ray absorption spectroscopy (XAS) experiments, we observed the formation of Cu clusters with low CN from distorted Cu dimers in HKUST-1 during CO2 electroreduction. These exhibited 45% C2H4 faradaic efficiency (FE), a record for MOF-derived Cu cluster catalysts. A structure-activity relationship was established wherein the tuning of the Cu-Cu CN in Cu clusters determines the CO2RR selectivity.

16.
Nano Lett ; 17(12): 7191-7195, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29077419

RESUMO

Stokes shift, an energy difference between the excitonic absorption and emission, is a property of colloidal quantum dots (CQDs) typically ascribed to splitting between dark and bright excitons. In some materials, e.g., PbS, CuInS2, and CdHgTe, a Stokes shift of up to 200 meV is observed, substantially larger than the estimates of dark-bright state splitting or vibronic relaxations. The shift origin remains highly debated because contradictory signatures of both surface and bulk character were reported for the Stokes-shifted electronic state. Here, we show that the energy transfer among CQDs in a polydispersed ensemble in solution suffices to explain the excess Stokes shift. This energy transfer is primarily due to CQD aggregation and can be substantially eliminated by extreme dilution, higher-viscosity solvent, or better-dispersed colloids. Our findings highlight that ensemble polydispersity remains the primary source of the Stokes shift in CQDs in solution, propagating into the Stokes shift in films and the open-circuit voltage deficit in CQD solar cells. Improved synthetic control can bring notable advancements in CQD photovoltaics, and the Stokes shift continues to provide a sensitive and significant metric to monitor ensemble size distribution.

17.
Nano Lett ; 16(7): 4630-4, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27351104

RESUMO

Colloidal quantum dot (CQD) solar cells are solution-processed photovoltaics with broad spectral absorption tunability. Major advances in their efficiency have been made via improved CQD surface passivation and device architectures with enhanced charge carrier collection. Herein, we demonstrate a new strategy to improve further the passivation of CQDs starting from the solution phase. A cosolvent system is employed to tune the solvent polarity in order to achieve the solvation of methylammonium iodide (MAI) and the dispersion of hydrophobic PbS CQDs simultaneously in a homogeneous phase, otherwise not achieved in a single solvent. This process enables MAI to access the CQDs to confer improved passivation. This, in turn, allows for efficient charge extraction from a thicker photoactive layer device, leading to a certified solar cell power conversion efficiency of 10.6%, a new certified record in CQD photovoltaics.

18.
Nat Nanotechnol ; 18(9): 993-999, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37386140

RESUMO

Quantum photonic technologies such as quantum communication, sensing or computation require efficient, stable and pure single-photon sources. Epitaxial quantum dots (QDs) have been made capable of on-demand photon generation with high purity, indistinguishability and brightness, although they require precise fabrication and face challenges in scalability. By contrast, colloidal QDs are batch synthesized in solution but typically have broader linewidths, low single-photon purities and unstable emission. Here we demonstrate spectrally stable, pure and narrow-linewidth single-photon emission from InP/ZnSe/ZnS colloidal QDs. Using photon correlation Fourier spectroscopy, we observe single-dot linewidths as narrow as ~5 µeV at 4 K, giving a lower-bounded optical coherence time, T2, of ~250 ps. These dots exhibit minimal spectral diffusion on timescales of microseconds to minutes, and narrow linewidths are maintained on timescales up to 50 ms, orders of magnitude longer than other colloidal systems. Moreover, these InP/ZnSe/ZnS dots have single-photon purities g(2)(τ = 0) of 0.077-0.086 in the absence of spectral filtering. This work demonstrates the potential of heavy-metal-free InP-based QDs as spectrally stable sources of single photons.

19.
Nat Commun ; 14(1): 2426, 2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37105984

RESUMO

Hybrid perovskites have emerged as a promising material candidate for exciton-polariton (polariton) optoelectronics. Thermodynamically, low-threshold Bose-Einstein condensation requires efficient scattering to the polariton energy dispersion minimum, and many applications demand precise control of polariton interactions. Thus far, the primary mechanisms by which polaritons relax in perovskites remains unclear. In this work, we perform temperature-dependent measurements of polaritons in low-dimensional perovskite wedged microcavities achieving a Rabi splitting of [Formula: see text] = 260 ± 5 meV. We change the Hopfield coefficients by moving the optical excitation along the cavity wedge and thus tune the strength of the primary polariton relaxation mechanisms in this material. We observe the polariton bottleneck regime and show that it can be overcome by harnessing the interplay between the different excitonic species whose corresponding dynamics are modified by strong coupling. This work provides an understanding of polariton relaxation in perovskites benefiting from efficient, material-specific relaxation pathways and intracavity pumping schemes from thermally brightened excitonic species.

20.
ACS Nano ; 17(4): 3598-3609, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36758155

RESUMO

InP quantum dots (QDs) are the material of choice for QD display applications and have been used as active layers in QD light-emitting diodes (QDLEDs) with high efficiency and color purity. Optimizing the color purity of QDs requires understanding mechanisms of spectral broadening. While ensemble-level broadening can be minimized by synthetic tuning to yield monodisperse QD sizes, single QD line widths are broadened by exciton-phonon scattering and fine-structure splitting. Here, using photon-correlation Fourier spectroscopy, we extract average single QD line widths of 50 meV at 293 K for red-emitting InP/ZnSe/ZnS QDs, among the narrowest for colloidal QDs. We measure InP/ZnSe/ZnS single QD emission line shapes at temperatures between 4 and 293 K and model the spectra using a modified independent boson model. We find that inelastic acoustic phonon scattering and fine-structure splitting are the most prominent broadening mechanisms at low temperatures, whereas pure dephasing from elastic acoustic phonon scattering is the primary broadening mechanism at elevated temperatures, and optical phonon scattering contributes minimally across all temperatures. Conversely for CdSe/CdS/ZnS QDs, we find that optical phonon scattering is a larger contributor to the line shape at elevated temperatures, leading to intrinsically broader single-dot line widths than for InP/ZnSe/ZnS. We are able to reconcile narrow low-temperature line widths and broad room-temperature line widths within a self-consistent model that enables parametrization of line width broadening, for different material classes. This can be used for the rational design of more spectrally narrow materials. Our findings reveal that red-emitting InP/ZnSe/ZnS QDs have intrinsically narrower line widths than typically synthesized CdSe QDs, suggesting that these materials could be used to realize QDLEDs with high color purity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA