Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
1.
EMBO J ; 2024 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-39420094

RESUMO

Tubular aggregate myopathy (TAM) is a heritable myopathy primarily characterized by progressive muscle weakness, elevated levels of creatine kinase (CK), hypocalcemia, exercise intolerance, and the presence of tubular aggregates (TAs). Here, we generated a knock-in mouse model based on a human gain-of-function mutation which results in a severe, early-onset form of TAM, by inducing a glycine-to-serine point mutation in the ORAI1 pore (Orai1G100S/+ or GS mice). By 8 months of age, GS mice exhibited significant muscle weakness, exercise intolerance, elevated CK levels, hypocalcemia, and robust TA presence. Unexpectedly, constitutive Ca2+ entry in mutant mice was observed in muscle only during early development and was abolished in adult skeletal muscle, partly due to reduced ORAI1 expression. Consistent with proteomic results, significant mitochondrial damage and dysfunction was observed in skeletal muscle of GS mice. Thus, GS mice represent a powerful model for investigation of the pathophysiological mechanisms that underlie key TAM symptoms, as well as those compensatory responses that limit the damaging effects of uncontrolled ORAI1-mediated Ca2+ influx.

2.
FASEB J ; 37(11): e23233, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37823221

RESUMO

Mucus plugging and non-resolving inflammation are inherent features of cystic fibrosis (CF) that may lead to progressive lung disease and exercise intolerance, which are the main causes of morbidity and mortality for people with CF. Therefore, understanding the influence of mucus on basic mechanisms underlying the inflammatory response and identifying strategies to resolve mucus-driven airway inflammation and consequent morbidity in CF are of wide interest. Here, we investigated the effects of the proresolving lipid mediator resolvin (Rv) D1 on mucus-related inflammation as a proof-of-concept to alleviate the burden of lung disease and restore exercise intolerance in CF. We tested the effects of RvD1 on inflammatory responses of human organotypic airways and leukocytes to CF mucus and of humanized mice expressing the epithelial Na + channel (ßENaC-Tg) having CF-like mucus obstruction, lung disease, and physical exercise intolerance. RvD1 reduced pathogenic phenotypes of CF-airway supernatant (ASN)-stimulated human neutrophils, including loss of L-selectin shedding and CD16. RNASeq analysis identified select transcripts and pathways regulated by RvD1 in ASN-stimulated CF bronchial epithelial cells that are involved in sugar metabolism, NF-κB activation and inflammation, and response to stress. In in vivo inflammation using ßENaC TG mice, RvD1 reduced total leukocytes, PMN, and interstitial Siglec-MΦ when given at 6-8 weeks of age, and in older mice at 10-12 weeks of age, along with the decrease of pro-inflammatory chemokines and increase of anti-inflammatory IL-10. Furthermore, RvD1 treatment promoted the resolution of pulmonary exacerbation caused by Pseudomonas aeruginosa infection and significantly enhanced physical activity and energy expenditure associated with mucus obstruction, which was impaired in ßENaC-Tg mice compared with wild-type. These results demonstrate that RvD1 can rectify features of CF and offer proof-of-concept for its therapeutic application in this and other muco-obstructive lung diseases.


Assuntos
Fibrose Cística , Humanos , Camundongos , Animais , Fibrose Cística/genética , Tolerância ao Exercício , Pulmão/metabolismo , Inflamação/metabolismo
3.
Artigo em Inglês | MEDLINE | ID: mdl-39126637

RESUMO

Tubular aggregate myopathy (TAM) is a rare myopathy characterized by muscle weakness and myalgia. Muscle fibers from TAM patients show characteristic accumulation of membrane tubules that contain proteins from the sarcoplasmic reticulum (SR). Gain-of-function mutations in STIM1 and ORAI1, the key proteins participating in the Store-Operated Ca2+ Entry (SOCE) mechanism, were identified in patients with TAM. Recently, the CASQ1 gene was also found to be mutated in patients with TAM. CASQ1 is the main Ca2+ buffer of the SR and a negative regulator of SOCE. Previous characterization of CASQ1 mutants in non-muscle cells revealed that they display altered Ca2+dependent polymerization, reduced Ca2+storage capacity and alteration in SOCE inhibition. We thus aimed to assess how mutations in CASQ1 affect calcium regulation in skeletal muscles, where CASQ1 is naturally expressed. We thus expressed CASQ1 mutants in muscle fibers from Casq1 knockout mice, which provide a valuable model for studying the Ca2+ storage capacity of TAM-associated mutants. Moreover, since Casq1 knockout mice display a constitutively active SOCE, the effect of CASQ1 mutants on SOCE inhibition can be also properly examined in fibers from these mice. Analysis of intracellular Ca2+ confirmed that CASQ1 mutants have impaired ability to store Ca2+and lose their ability to inhibit skeletal muscle SOCE; this is in agreement with the evidence that alterations in Ca2+entry due to mutations in either STIM1, ORAI1 or CASQ1 represents a hallmark of TAM.

4.
EMBO J ; 38(1)2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30420558

RESUMO

As a consequence of impaired glucose or fatty acid metabolism, bioenergetic stress in skeletal muscles may trigger myopathy and rhabdomyolysis. Genetic mutations causing loss of function of the LPIN1 gene frequently lead to severe rhabdomyolysis bouts in children, though the metabolic alterations and possible therapeutic interventions remain elusive. Here, we show that lipin1 deficiency in mouse skeletal muscles is sufficient to trigger myopathy. Strikingly, muscle fibers display strong accumulation of both neutral and phospholipids. The metabolic lipid imbalance can be traced to an altered fatty acid synthesis and fatty acid oxidation, accompanied by a defect in acyl chain elongation and desaturation. As an underlying cause, we reveal a severe sarcoplasmic reticulum (SR) stress, leading to the activation of the lipogenic SREBP1c/SREBP2 factors, the accumulation of the Fgf21 cytokine, and alterations of SR-mitochondria morphology. Importantly, pharmacological treatments with the chaperone TUDCA and the fatty acid oxidation activator bezafibrate improve muscle histology and strength of lipin1 mutants. Our data reveal that SR stress and alterations in SR-mitochondria contacts are contributing factors and potential intervention targets of the myopathy associated with lipin1 deficiency.


Assuntos
Estresse do Retículo Endoplasmático/genética , Doenças Musculares/genética , Fosfatidato Fosfatase/genética , Retículo Sarcoplasmático/metabolismo , Ácido Tauroquenodesoxicólico/farmacologia , Animais , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Metabolismo dos Lipídeos/genética , Masculino , Camundongos , Camundongos Transgênicos , Mitocôndrias Musculares/efeitos dos fármacos , Mitocôndrias Musculares/metabolismo , Chaperonas Moleculares/farmacologia , Chaperonas Moleculares/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/tratamento farmacológico , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Retículo Sarcoplasmático/efeitos dos fármacos , Retículo Sarcoplasmático/patologia , Ácido Tauroquenodesoxicólico/uso terapêutico
6.
Cell ; 133(1): 53-65, 2008 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-18394989

RESUMO

Mice with a malignant hyperthermia mutation (Y522S) in the ryanodine receptor (RyR1) display muscle contractures, rhabdomyolysis, and death in response to elevated environmental temperatures. We demonstrate that this mutation in RyR1 causes Ca(2+) leak, which drives increased generation of reactive nitrogen species (RNS). Subsequent S-nitrosylation of the mutant RyR1 increases its temperature sensitivity for activation, producing muscle contractures upon exposure to elevated temperatures. The Y522S mutation in humans is associated with central core disease. Many mitochondria in the muscle of heterozygous Y522S mice are swollen and misshapen. The mutant muscle displays decreased force production and increased mitochondrial lipid peroxidation with aging. Chronic treatment with N-acetylcysteine protects against mitochondrial oxidative damage and the decline in force generation. We propose a feed-forward cyclic mechanism that increases the temperature sensitivity of RyR1 activation and underlies heat stroke and sudden death. The cycle eventually produces a myopathy with damaged mitochondria.


Assuntos
Morte Súbita/etiologia , Golpe de Calor/metabolismo , Músculo Esquelético/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cálcio/metabolismo , Temperatura Alta , Humanos , Hipertermia Maligna/metabolismo , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/patologia , Nitrosação , Estresse Oxidativo , Espécies Reativas de Nitrogênio , Espécies Reativas de Oxigênio
7.
Int J Mol Sci ; 24(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36982401

RESUMO

Store-operated Ca2+ entry (SOCE) is a mechanism that allows muscle fibers to recover external Ca2+, which first enters the cytoplasm and then, via SERCA pump, also refills the depleted intracellular stores (i.e., the sarcoplasmic reticulum, SR). We recently discovered that SOCE is mediated by Calcium Entry Units (CEUs), intracellular junctions formed by: (i) SR stacks containing STIM1; and (ii) I-band extensions of the transverse tubule (TT) containing Orai1. The number and size of CEUs increase during prolonged muscle activity, though the mechanisms underlying exercise-dependent formation of new CEUs remain to be elucidated. Here, we first subjected isolated extensor digitorum longus (EDL) muscles from wild type mice to an ex vivo exercise protocol and verified that functional CEUs can assemble also in the absence of blood supply and innervation. Then, we evaluated whether parameters that are influenced by exercise, such as temperature and pH, may influence the assembly of CEUs. Results collected indicate that higher temperature (36 °C vs. 25 °C) and lower pH (7.2 vs. 7.4) increase the percentage of fibers containing SR stacks, the n. of SR stacks/area, and the elongation of TTs at the I band. Functionally, assembly of CEUs at higher temperature (36 °C) or at lower pH (7.2) correlates with increased fatigue resistance of EDL muscles in the presence of extracellular Ca2+. Taken together, these results indicate that CEUs can assemble in isolated EDL muscles and that temperature and pH are two of the possible regulators of CEU formation.


Assuntos
Cálcio , Músculo Esquelético , Camundongos , Animais , Cálcio/metabolismo , Temperatura , Músculo Esquelético/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Retículo Sarcoplasmático/metabolismo , Cálcio da Dieta , Concentração de Íons de Hidrogênio , Proteína ORAI1 , Molécula 1 de Interação Estromal
8.
FASEB J ; 35(6): e21662, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34046935

RESUMO

Human umbilical cord endothelial cells (HUVECs) obtained from women affected by gestational diabetes (GD-HUVECs) display durable pro-atherogenic modifications and might be considered a valid in vitro model for studying chronic hyperglycemia effects on early endothelial senescence. Here, we demonstrated that GD- compared to C-HUVECs (controls) exhibited oxidative stress, altered both mitochondrial membrane potential and antioxidant response, significant increase of senescent cells characterized by a reduced NAD-dependent deacetylase sirtuin-1 (SIRT1) activity together with an increase in cyclin-dependent kinase inhibitor-2A (P16), cyclin-dependent kinase inhibitor-1 (P21), and tumor protein p53 (P53) acetylation. This was associated with the p300 activation, and its silencing significantly reduced the GD-HUVECs increased protein levels of P300 and Ac-P53 thus indicating a persistent endothelial senescence via SIRT1/P300/P53/P21 pathway. Overall, our data suggest that GD-HUVECs can represent an "endothelial hyperglycemic memory" model to investigate in vitro the early endothelium senescence in cells chronically exposed to hyperglycemia in vivo.


Assuntos
Antioxidantes/metabolismo , Senescência Celular , Diabetes Gestacional/fisiopatologia , Regulação da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/patologia , Modelos Biológicos , Estresse Oxidativo , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Proteína p300 Associada a E1A/genética , Proteína p300 Associada a E1A/metabolismo , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Técnicas In Vitro , Gravidez , Sirtuína 1/genética , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Int J Mol Sci ; 23(9)2022 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-35563676

RESUMO

Environmental heat-stroke (HS) is a life-threatening response often triggered by hot and humid weather. Several lines of evidence indicate that HS is caused by excessive heat production in skeletal muscle, which in turn is the result of abnormal Ca2+ leak from the sarcoplasmic reticulum (SR) and excessive production of oxidative species of oxygen and nitrogen. As a high fat diet is known to increase oxidative stress, the objective of the present study was to investigate the effects of 3 months of high-fat diet (HFD) on the HS susceptibility of wild type (WT) mice. HS susceptibility was tested in an environmental chamber where 4 months old WT mice were exposed to heat stress (41 °C for 1 h). In comparison with mice fed with a regular diet, mice fed with HFD showed: (a) increased body weight and accumulation of adipose tissue; (b) elevated oxidative stress in skeletal muscles; (c) increased heat generation and oxygen consumption during exposure to heat stress; and finally, (d) enhanced sensitivity to both temperature and caffeine of isolated muscles during in-vitro contracture test. These data (a) suggest that HFD predisposes WT mice to heat stress and (b) could have implications for guidelines regarding food intake during periods of intense environmental heat.


Assuntos
Dieta Hiperlipídica , Golpe de Calor , Tecido Adiposo , Animais , Dieta Hiperlipídica/efeitos adversos , Golpe de Calor/etiologia , Resposta ao Choque Térmico/fisiologia , Camundongos , Músculo Esquelético/fisiologia
10.
Int J Mol Sci ; 23(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35409132

RESUMO

Exertional heat stroke (HS) is a hyperthermic crisis triggered by an excessive accumulation of Ca2+ in skeletal muscle fibers. We demonstrated that exercise leads to the formation of calcium entry units (CEUs), which are intracellular junctions that reduce muscle fatigue by promoting the recovery of extracellular Ca2+ via store-operated Ca2+ entry (SOCE). Here, we tested the hypothesis that exercise-induced assembly of CEUs may increase the risk of HS when physical activity is performed in adverse environmental conditions (high temperature and humidity). Adult mice were: (a) first, divided into three experimental groups: control, trained-1 month (voluntary running in wheel cages), and acutely exercised-1 h (incremental treadmill run); and (b) then subjected to an exertional stress (ES) protocol, a treadmill run in an environmental chamber at 34 °C and 40% humidity. The internal temperature of the mice at the end of the ES was higher in both pre-exercised groups. During an ES ex-vivo protocol, extensor digitorum longus(EDL) muscles from the trained-1 month and exercised-1 h mice generated greater basal tension than in the control and were those that contained a greater number of CEUs, assessed by electron microscopy. The data collected suggest that the entry of Ca2+ from extracellular space via CEUs could contribute to exertional HS when exercise is performed in adverse environmental conditions.


Assuntos
Temperatura Corporal , Músculo Esquelético , Animais , Cálcio , Camundongos , Fadiga Muscular , Fibras Musculares Esqueléticas , Músculo Esquelético/fisiologia
11.
J Muscle Res Cell Motil ; 42(2): 233-249, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32812118

RESUMO

In the last decades the term Store-operated Ca2+ entry (SOCE) has been used in the scientific literature to describe an ubiquitous cellular mechanism that allows recovery of calcium (Ca2+) from the extracellular space. SOCE is triggered by a reduction of Ca2+ content (i.e. depletion) in intracellular stores, i.e. endoplasmic or sarcoplasmic reticulum (ER and SR). In skeletal muscle the mechanism is primarily mediated by a physical interaction between stromal interaction molecule-1 (STIM1), a Ca2+ sensor located in the SR membrane, and ORAI1, a Ca2+-permeable channel of external membranes, located in transverse tubules (TTs), the invaginations of the plasma membrane (PM) deputed to propagation of action potentials. It is generally accepted that in skeletal muscle SOCE is important to limit muscle fatigue during repetitive stimulation. We recently discovered that exercise promotes the assembly of new intracellular junctions that contains colocalized STIM1 and ORAI1, and that the presence of these new junctions increases Ca2+ entry via ORAI1, while improving fatigue resistance during repetitive stimulation. Based on these findings we named these new junctions Ca2+ Entry Units (CEUs). CEUs are dynamic organelles that assemble during muscle activity and disassemble during recovery thanks to the plasticity of the SR (containing STIM1) and the elongation/retraction of TTs (bearing ORAI1). Interestingly, similar structures described as SR stacks were previously reported in different mouse models carrying mutations in proteins involved in Ca2+ handling (calsequestrin-null mice; triadin and junctin null mice, etc.) or associated to microtubules (MAP6 knockout mice). Mutations in Stim1 and Orai1 (and calsequestrin-1) genes have been associated to tubular aggregate myopathy (TAM), a muscular disease characterized by: (a) muscle pain, cramping, or weakness that begins in childhood and worsens over time, and (b) the presence of large accumulations of ordered SR tubes (tubular aggregates, TAs) that do not contain myofibrils, mitochondria, nor TTs. Interestingly, TAs are also present in fast twitch muscle fibers of ageing mice. Several important issues remain un-answered: (a) the molecular mechanisms and signals that trigger the remodeling of membranes and the functional activation of SOCE during exercise are unclear; and (b) how dysfunctional SOCE and/or mutations in Stim1, Orai1 and calsequestrin (Casq1) genes lead to the formation of tubular aggregates (TAs) in aging and disease deserve investigation.


Assuntos
Cálcio , Miopatias Congênitas Estruturais , Animais , Cálcio/metabolismo , Sinalização do Cálcio , Camundongos , Músculo Esquelético/metabolismo , Proteína ORAI1/genética , Proteína ORAI1/metabolismo , Retículo Sarcoplasmático/metabolismo
12.
Int J Mol Sci ; 22(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201319

RESUMO

Proper skeletal muscle function is controlled by intracellular Ca2+ concentration and by efficient production of energy (ATP), which, in turn, depend on: (a) the release and re-uptake of Ca2+ from sarcoplasmic-reticulum (SR) during excitation-contraction (EC) coupling, which controls the contraction and relaxation of sarcomeres; (b) the uptake of Ca2+ into the mitochondrial matrix, which stimulates aerobic ATP production; and finally (c) the entry of Ca2+ from the extracellular space via store-operated Ca2+ entry (SOCE), a mechanism that is important to limit/delay muscle fatigue. Abnormalities in Ca2+ handling underlie many physio-pathological conditions, including dysfunction in ageing. The specific focus of this review is to discuss the importance of the proper architecture of organelles and membrane systems involved in the mechanisms introduced above for the correct skeletal muscle function. We reviewed the existing literature about EC coupling, mitochondrial Ca2+ uptake, SOCE and about the structural membranes and organelles deputed to those functions and finally, we summarized the data collected in different, but complementary, projects studying changes caused by denervation and ageing to the structure and positioning of those organelles: a. denervation of muscle fibers-an event that contributes, to some degree, to muscle loss in ageing (known as sarcopenia)-causes misplacement and damage: (i) of membrane structures involved in EC coupling (calcium release units, CRUs) and (ii) of the mitochondrial network; b. sedentary ageing causes partial disarray/damage of CRUs and of calcium entry units (CEUs, structures involved in SOCE) and loss/misplacement of mitochondria; c. functional electrical stimulation (FES) and regular exercise promote the rescue/maintenance of the proper architecture of CRUs, CEUs, and of mitochondria in both denervation and ageing. All these structural changes were accompanied by related functional changes, i.e., loss/decay in function caused by denervation and ageing, and improved function following FES or exercise. These data suggest that the integrity and proper disposition of intracellular organelles deputed to Ca2+ handling and aerobic generation of ATP is challenged by inactivity (or reduced activity); modifications in the architecture of these intracellular membrane systems may contribute to muscle dysfunction in ageing and sarcopenia.


Assuntos
Trifosfato de Adenosina/metabolismo , Envelhecimento/patologia , Cálcio/metabolismo , Músculo Esquelético/patologia , Doenças Musculares/patologia , Organelas/patologia , Envelhecimento/metabolismo , Animais , Humanos , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Organelas/metabolismo
13.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34445071

RESUMO

Ageing is associated with an increase in the incidence of heart failure, even if the existence of a real age-related cardiomyopathy remains controversial. Effective contraction and relaxation of cardiomyocytes depend on efficient production of ATP (handled by mitochondria) and on proper Ca2+ supply to myofibrils during excitation-contraction (EC) coupling (handled by Ca2+ release units, CRUs). Here, we analyzed mitochondria and CRUs in hearts of adult (4 months old) and aged (≥24 months old) mice. Analysis by confocal and electron microscopy (CM and EM, respectively) revealed an age-related loss of proper organization and disposition of both mitochondria and EC coupling units: (a) mitochondria are improperly disposed and often damaged (percentage of severely damaged mitochondria: adults 3.5 ± 1.1%; aged 16.5 ± 3.5%); (b) CRUs that are often misoriented (longitudinal) and/or misplaced from the correct position at the Z line. Immunolabeling with antibodies that mark either the SR or T-tubules indicates that in aged cardiomyocytes the sarcotubular system displays an extensive disarray. This disarray could be in part caused by the decreased expression of Cav-3 and JP-2 detected by western blot (WB), two proteins involved in formation of T-tubules and in docking SR to T-tubules in dyads. By WB analysis, we also detected increased levels of 3-NT in whole hearts homogenates of aged mice, a product of nitration of protein tyrosine residues, recognized as marker of oxidative stress. Finally, a detailed EM analysis of CRUs (formed by association of SR with T-tubules) points to ultrastructural modifications, i.e., a decrease in their frequency (adult: 5.1 ± 0.5; aged: 3.9 ± 0.4 n./50 µm2) and size (adult: 362 ± 40 nm; aged: 254 ± 60 nm). The changes in morphology and disposition of mitochondria and CRUs highlighted by our results may underlie an inefficient supply of Ca2+ ions and ATP to the contractile elements, and possibly contribute to cardiac dysfunction in ageing.


Assuntos
Cálcio/metabolismo , Mitocôndrias Cardíacas/ultraestrutura , Miócitos Cardíacos/ultraestrutura , Envelhecimento , Animais , Senescência Celular , Acoplamento Excitação-Contração , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias Cardíacas/metabolismo , Mitocôndrias Cardíacas/patologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
14.
Int J Mol Sci ; 22(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34830330

RESUMO

Marinesco-Sjogren syndrome (MSS) is a rare multisystem pediatric disorder, caused by loss-of-function mutations in the gene encoding the endoplasmic reticulum cochaperone SIL1. SIL1 acts as a nucleotide exchange factor for BiP, which plays a central role in secretory protein folding. SIL1 mutant cells have reduced BiP-assisted protein folding, cannot fulfil their protein needs, and experience chronic activation of the unfolded protein response (UPR). Maladaptive UPR may explain the cerebellar and skeletal muscle degeneration responsible for the ataxia and muscle weakness typical of MSS. However, the cause of other more variable, clinical manifestations, such as mild to severe mental retardation, hypogonadism, short stature, and skeletal deformities, is less clear. To gain insights into the pathogenic mechanisms and/or adaptive responses to SIL1 loss, we carried out cell biological and proteomic investigations in skin fibroblasts derived from a young patient carrying the SIL1 R111X mutation. Despite fibroblasts not being overtly affected in MSS, we found morphological and biochemical changes indicative of UPR activation and altered cell metabolism. All the cell machineries involved in RNA splicing and translation were strongly downregulated, while protein degradation via lysosome-based structures was boosted, consistent with an attempt of the cell to reduce the workload of the endoplasmic reticulum and dispose of misfolded proteins. Cell metabolism was extensively affected as we observed a reduction in lipid synthesis, an increase in beta oxidation, and an enhancement of the tricarboxylic acid cycle, with upregulation of eight of its enzymes. Finally, the catabolic pathways of various amino acids, including valine, leucine, isoleucine, tryptophan, lysine, aspartate, and phenylalanine, were enhanced, while the biosynthetic pathways of arginine, serine, glycine, and cysteine were reduced. These results indicate that, in addition to UPR activation and increased protein degradation, MSS fibroblasts have profound metabolic alterations, which may help them cope with the absence of SIL1.


Assuntos
Fibroblastos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Mutação com Perda de Função , Splicing de RNA , Degenerações Espinocerebelares/genética , Resposta a Proteínas não Dobradas , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Aminoácidos/metabolismo , Criança , Ciclo do Ácido Cítrico/genética , Retículo Endoplasmático/genética , Retículo Endoplasmático/metabolismo , Fator de Iniciação 2 em Eucariotos/genética , Fator de Iniciação 2 em Eucariotos/metabolismo , Fibroblastos/patologia , Expressão Gênica , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Fatores de Troca do Nucleotídeo Guanina/deficiência , Humanos , Metabolismo dos Lipídeos/genética , Anotação de Sequência Molecular , Cultura Primária de Células , Proteólise , Degenerações Espinocerebelares/metabolismo , Degenerações Espinocerebelares/patologia , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
15.
Int J Mol Sci ; 21(15)2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32751833

RESUMO

: Experimental evidence highlights the involvement of the endoplasmic reticulum (ER)-mediated Ca2+ signals in modulating synaptic plasticity and spatial memory formation in the hippocampus. Ca2+ release from the ER mainly occurs through two classes of Ca2+ channels, inositol 1,4,5-trisphosphate receptors (InsP3Rs) and ryanodine receptors (RyRs). Calsequestrin (CASQ) and calreticulin (CR) are the most abundant Ca2+-binding proteins allowing ER Ca2+ storage. The hippocampus is one of the brain regions expressing CASQ, but its role in neuronal activity, plasticity, and the learning processes is poorly investigated. Here, we used knockout mice lacking both CASQ type-1 and type-2 isoforms (double (d)CASQ-null mice) to: a) evaluate in adulthood the neuronal electrophysiological properties and synaptic plasticity in the hippocampal Cornu Ammonis 1 (CA1) field and b) study the performance of knockout mice in spatial learning tasks. The ablation of CASQ increased the CA1 neuron excitability and improved the long-term potentiation (LTP) maintenance. Consistently, (d)CASQ-null mice performed significantly better than controls in the Morris Water Maze task, needing a shorter time to develop a spatial preference for the goal. The Ca2+ handling analysis in CA1 pyramidal cells showed a decrement of Ca2+ transient amplitude in (d)CASQ-null mouse neurons, which is consistent with a decrease in afterhyperpolarization improving LTP. Altogether, our findings suggest that CASQ deletion affects activity-dependent ER Ca2+ release, thus facilitating synaptic plasticity and spatial learning in post-natal development.


Assuntos
Região CA1 Hipocampal/metabolismo , Proteínas de Ligação ao Cálcio/fisiologia , Calsequestrina/fisiologia , Plasticidade Neuronal , Aprendizagem Espacial , Animais , Região CA1 Hipocampal/citologia , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Calsequestrina/genética , Retículo Endoplasmático/metabolismo , Técnicas de Inativação de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Piramidais/citologia , Células Piramidais/metabolismo
16.
Arch Biochem Biophys ; 663: 22-33, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30578752

RESUMO

In fast-twitch fibers from adult mice Ca2+ release units (CRUs, i.e. intracellular junctions of excitation-contraction coupling), and mitochondria are structurally linked to each other by small strands, named tethers. We recently showed that aging causes separation of a fraction of mitochondria from CRUs and a consequent impairment of the Ca2+ signaling between the two organelles. However, whether the uncoupling of mitochondria from CRUs is the result of aging per-se or the consequence of reduced muscle activity remains still unclear. Here we studied the association between mitochondria and CRUs: in a) extensor digitorum longus (EDL) muscles from 2 years old mice, either sedentary or trained for 1 year in wheel cages; and b) denervated EDL muscles from adult mice and rats. We analyzed muscle samples using a combination of structural (confocal and electron microscopy), biochemical (assessment of oxidative stress via western blot), and functional (ex-vivo contractile properties, and mitochondrial Ca2+ uptake) experimental procedures. The results collected in structural studies indicate that: a) ageing and denervation result in partial uncoupling between mitochondria and CRUs; b) exercise either maintains (in old mice) or restores (in transiently denervated rats) the association between the two organelles. Functional studies supported the hypothesis that CRU-mitochondria coupling is important for mitochondrial Ca2+ uptake, optimal force generation, and muscle performance. Taken together our results indicate that muscle activity maintains/improves proper association between CRUs and mitochondria.


Assuntos
Envelhecimento/fisiologia , Cálcio/metabolismo , Mitocôndrias Musculares/metabolismo , Músculo Esquelético/fisiologia , Comportamento Sedentário , Envelhecimento/metabolismo , Animais , Camundongos , Camundongos Endogâmicos C57BL , Estresse Oxidativo , Ratos , Ratos Sprague-Dawley
17.
Circ Res ; 121(5): 525-536, 2017 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-28620067

RESUMO

RATIONALE: Mutations in the cardiac Ryanodine Receptor gene (RYR2) cause dominant catecholaminergic polymorphic ventricular tachycardia (CPVT), a leading cause of sudden death in apparently healthy individuals exposed to emotions or physical exercise. OBJECTIVE: We investigated the efficacy of allele-specific silencing by RNA interference to prevent CPVT phenotypic manifestations in our dominant CPVT mice model carriers of the heterozygous mutation R4496C in RYR2. METHODS AND RESULTS: We developed an in vitro mRNA and protein-based assays to screen multiple siRNAs for their ability to selectively silence mutant RYR2-R4496C mRNA over the corresponding wild-type allele. For the most performant of these siRNAs (siRYR2-U10), we evaluated the efficacy of an adeno-associated serotype 9 viral vector (AAV9) expressing miRYR2-U10 in correcting RyR2 (Ryanodine Receptor type 2 protein) function after in vivo delivery by intraperitoneal injection in neonatal and adult RyR2R4496C/+ (mice heterozygous for the R4496C mutation in the RyR2) heterozygous CPVT mice. Transcriptional analysis showed that after treatment with miRYR2-U10, the ratio between wild-type and mutant RYR2 mRNA was doubled (from 1:1 to 2:1) confirming the ability of miRYR2-U10 to selectively inhibit RYR2-R4496C mRNA, whereas protein quantification showed that total RyR2 was reduced by 15% in the heart of treated mice. Furthermore, AAV9-miRYR2-U10 effectively (1) reduced isoproterenol-induced delayed afterdepolarizations and triggered activity in infected cells, (2) reduced adrenergically mediated ventricular tachycardia in treated mice, (3) reverted ultrastructural abnormalities of junctional sarcoplasmic reticulum and transverse tubules, and (4) attenuated mitochondrial abnormalities. CONCLUSIONS: The study demonstrates that allele-specific silencing with miRYR2-U10 prevents life-threatening arrhythmias in CPVT mice, suggesting that the reduction of mutant RyR2 may be a novel therapeutic approach for CPVT.


Assuntos
Alelos , Arritmias Cardíacas/genética , Heterozigoto , Mutação/genética , RNA Mensageiro/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Animais Recém-Nascidos , Arritmias Cardíacas/patologia , Arritmias Cardíacas/prevenção & controle , Células Cultivadas , Inativação Gênica/fisiologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , RNA Mensageiro/ultraestrutura , Canal de Liberação de Cálcio do Receptor de Rianodina/deficiência , Canal de Liberação de Cálcio do Receptor de Rianodina/ultraestrutura
18.
J Physiol ; 596(7): 1243-1257, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29148051

RESUMO

KEY POINTS: The different performance of slow and fast muscles is mainly attributed to diversity of the myosin heavy chain (MHC) isoform expressed within them. In this study fast sarcomere-level mechanics has been applied to Ca2+ -activated single permeabilised fibres isolated from soleus (containing the slow myosin isoform) and psoas (containing the fast myosin isoform) muscles of rabbit for a comparative definition of the mechano-kinetics of force generation by slow and fast myosin isoforms in situ. The stiffness and the force of the slow myosin isoform are three times smaller than those of the fast isoform, suggesting that the stiffness of the myosin motor is a determinant of the isoform-dependent functional diversity between skeletal muscles. These results open the question of the mechanism that can reconcile the reduced performance of the slow MHC with the higher efficiency of the slow muscle. ABSTRACT: The skeletal muscle exhibits large functional differences depending on the myosin heavy chain (MHC) isoform expressed in its molecular motor, myosin II. The differences in the mechanical features of force generation by myosin isoforms were investigated in situ by using fast sarcomere-level mechanical methods in permeabilised fibres (sarcomere length 2.4 µm, temperature 12°C, 4% dextran T-500) from slow (soleus, containing the MHC-1 isoform) and fast (psoas, containing the MHC-2X isoform) skeletal muscle of the rabbit. The stiffness of the half-sarcomere was determined at the plateau of Ca2+ -activated isometric contractions and in rigor and analysed with a model that accounted for the filament compliance to estimate the stiffness of the myosin motor (ε). ε was 0.56 ± 0.04 and 1.70 ± 0.37 pN nm-1 for the slow and fast isoform, respectively, while the average strain per attached motor (s0 ) was similar (∼3.3 nm) in both isoforms. Consequently the force per motor (F0  = Îµs0 ) was three times smaller in the slow isoform than in the fast isoform (1.89 ± 0.43 versus 5.35 ± 1.51 pN). The fraction of actin-attached motors responsible for maximum isometric force at saturating Ca2+ (T0,4.5 ) was 0.47 ± 0.09 in soleus fibres, 70% larger than that in psoas fibres (0.29 ± 0.08), so that F0 in slow fibres was decreased by only 53%. The lower stiffness and force of the slow myosin isoform open the question of the molecular basis of the higher efficiency of slow muscle with respect to fast muscle.


Assuntos
Contração Muscular/fisiologia , Fibras Musculares de Contração Rápida/fisiologia , Fibras Musculares de Contração Lenta/fisiologia , Miosina Tipo II/metabolismo , Animais , Masculino , Coelhos
19.
FASEB J ; 31(8): 3649-3662, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28465322

RESUMO

In humans, hyperthermic episodes can be triggered by halogenated anesthetics [malignant hyperthermia (MH) susceptibility] and by high temperature [environmental heat stroke (HS)]. Correlation between MH susceptibility and HS is supported by extensive work in mouse models that carry a mutation in ryanodine receptor type-1 (RYR1Y522S/WT) and calsequestrin-1 knockout (CASQ1-null), 2 proteins that control Ca2+ release in skeletal muscle. As overheating episodes in humans have also been described during exertion, here we subjected RYR1Y522S/WT and CASQ1-null mice to an exertional-stress protocol (incremental running on a treadmill at 34°C and 40% humidity). The mortality rate was 80 and 78.6% in RYR1Y522S/WT and CASQ1-null mice, respectively, vs. 0% in wild-type mice. Lethal crises were characterized by hyperthermia and rhabdomyolysis, classic features of MH episodes. Of importance, pretreatment with azumolene, an analog of the drug used in humans to treat MH crises, reduced mortality to 0 and 12.5% in RYR1Y522S/WT and CASQ1-null mice, respectively, thanks to a striking reduction of hyperthermia and rhabdomyolysis. At the molecular level, azumolene strongly prevented Ca2+-dependent activation of calpains and NF-κB by lowering myoplasmic Ca2+ concentration and nitro-oxidative stress, parameters that were elevated in RYR1Y522S/WT and CASQ1-null mice. These results suggest that common molecular mechanisms underlie MH crises and exertional HS in mice.-Michelucci, A., Paolini, C., Boncompagni, S., Canato, M., Reggiani, C., Protasi, F. Strenuous exercise triggers a life-threatening response in mice susceptible to malignant hyperthermia.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Hipertermia Maligna/patologia , Condicionamento Físico Animal , Esforço Físico , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Cafeína/farmacologia , Proteínas de Ligação ao Cálcio/genética , Calsequestrina , Estimulação Elétrica , Regulação da Expressão Gênica/fisiologia , Predisposição Genética para Doença , Hipertermia Maligna/genética , Camundongos , Camundongos Knockout , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Rabdomiólise , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
20.
J Biol Chem ; 291(28): 14555-65, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27189940

RESUMO

We exploited a variety of mouse models to assess the roles of JP45-CASQ1 (CASQ, calsequestrin) and JP45-CASQ2 on calcium entry in slow twitch muscles. In flexor digitorum brevis (FDB) fibers isolated from JP45-CASQ1-CASQ2 triple KO mice, calcium transients induced by tetanic stimulation rely on calcium entry via La(3+)- and nifedipine-sensitive calcium channels. The comparison of excitation-coupled calcium entry (ECCE) between FDB fibers from WT, JP45KO, CASQ1KO, CASQ2KO, JP45-CASQ1 double KO, JP45-CASQ2 double KO, and JP45-CASQ1-CASQ2 triple KO shows that ECCE enhancement requires ablation of both CASQs and JP45. Calcium entry activated by ablation of both JP45-CASQ1 and JP45-CASQ2 complexes supports tetanic force development in slow twitch soleus muscles. In addition, we show that CASQs interact with JP45 at Ca(2+) concentrations similar to those present in the lumen of the sarcoplasmic reticulum at rest, whereas Ca(2+) concentrations similar to those present in the SR lumen after depolarization-induced calcium release cause the dissociation of JP45 from CASQs. Our results show that the complex JP45-CASQs is a negative regulator of ECCE and that tetanic force development in slow twitch muscles is supported by the dynamic interaction between JP45 and CASQs.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Calsequestrina/metabolismo , Proteínas de Membrana/metabolismo , Fibras Musculares de Contração Lenta/fisiologia , Animais , Proteínas de Ligação ao Cálcio/genética , Calsequestrina/genética , Técnicas de Inativação de Genes , Proteínas de Membrana/genética , Camundongos , Contração Muscular , Músculo Esquelético/fisiologia , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA