Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(6): 5984-5998, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38921028

RESUMO

Fucoxanthin is the most abundant carotenoid found in marine brown algae that exhibits several healthy properties. Dietary fucoxanthin is metabolized in the intestine, plasma, and other tissues to various metabolites, including fucoxanthinol. In this regard, the contribution of fucoxanthinol to the healthy properties of its precursor, fucoxanthin, against pathogenetic events associated with neurodegenerative diseases remains unexplored. Here, we evaluated and compared the antioxidant and neuroprotective effects of the carotenoids fucoxanthin and fucoxanthinol in in vitro models of Alzheimer's (AD) and Parkinson's (PD) disease. Neuronal SH-SY5Y cells were used to evaluate the antioxidant properties of the carotenoids against ABTS radical in the membrane and cytoplasm and oxidative stress elicited by tert-butyl hydroperoxide using the 2',7'-dichlorodihydrofluorescein diacetate probe. We also assessed the ability of the carotenoids to increase the glutathione (GSH) and activate the Nrf2/Keap1/ARE pathway using the monochlorobimane probe and western blotting method, respectively. The neuroprotective effects of the carotenoids against the neurotoxicity generated by oligomers of Beta-Amyloid (1-42) peptide (OAß) and 6-hydroxydopamine (6-OHDA), which are neurotoxins of AD and PD, respectively, were finally evaluated in the same neuronal cells using the thiazolyl blue tetrazolium bromide assay. Both carotenoids could reach the cytoplasm, which explains the mainly free radical scavenging activity at this level. Notably, fucoxanthinol had higher and lower antioxidant activity than fucoxanthin at extracellular and cellular levels. Although studied carotenoids exerted the ability to activate the Nrf2/Keap1/ARE pathway, leading to an increase of intracellular GSH, our results suggested that the antioxidant activity of the carotenoids could be mainly attributed to their radical scavenging activity in neuronal membrane and cytoplasm, where they accumulate. Fucoxanthinol also shared similar neuroprotective effects as fucoxanthin against the neurotoxicity generated by OAß and 6-OHDA, suggesting a potential neuroprotective contribution to the action of fucoxanthin administered as a food supplement in in vivo experimental models. These results encourage further research to evaluate the bioavailability of fucoxanthinol and other metabolites of fucoxanthin at the brain level to elucidate the dietary neuroprotective potential of fucoxanthin.

2.
Bioorg Chem ; 150: 107587, 2024 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-38941700

RESUMO

Molecular hybridization between structural fragments from the structures of curcumin (1) and resveratrol (2) was used as a designing tool to generate a new N-acyl-cinnamoyl-hydrazone hybrid molecular architecture. Twenty-eight new compounds were synthesized and evaluated for multifunctional activities related to Parkinson's disease (PD), including neuroprotection, antioxidant, metal chelating ability, and Keap1/Nrf2 pathway activation. Compounds 3b (PQM-161) and 3e (PQM-164) were highlighted for their significant antioxidant profile, acting directly as induced free radical stabilizers by DPPH and indirectly by modulating intracellular inhibition of t-BOOH-induced ROS formation in neuronal cells. The mechanism of action was determined as a result of Keap1/Nrf2 pathway activation by both compounds and confirmed by different experiments. Furthermore, compound 3e (PQM-164) exhibited a significant effect on the accumulation of α-synuclein and anti-inflammatory activity, leading to an expressive decrease in gene expression of iNOS, IL-1ß, and TNF-α. Overall, these results highlighted compound 3e as a promising and innovative multifunctional drug prototype candidate for PD treatment.

3.
Bioorg Med Chem ; 71: 116952, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35930852

RESUMO

The search for new drug candidates against Alzheimer's disease (AD) remains a complex challenge for medicinal chemists due to its multifactorial pathogenesis and incompletely understood physiopathology. In this context, we have explored the molecular hybridization of pharmacophore structural fragments from known bioactive molecules, aiming to obtain a novel molecular architecture in new chemical entities capable of concomitantly interacting with multiple targets in a so-called multi-target directed ligands (MTDLs) approach. This work describes the synthesis of 4-hydroxymethyl)piperidine-N-benzyl-acyl-hydrazone derivatives 5a-l, designed as novel MTDLs, showing improved multifunctional properties compared to the previously reported parent series of N-benzyl-(3-hydroxy)piperidine-acyl-hydrazone derivatives 4. The new improved derivatives were studied in silico, regarding their mode of interaction with AChE enzyme, and in vitro, for evaluation of their effects on the selective inhibition of cholinesterases, cellular antioxidant, and neuroprotective activities as their cytotoxicity in human neuroblastoma (SH-SY5Y) cells. Overall, compound PQM-181 (5 k) showed the best balanced selective and non-competitive inhibition of AChE (IC50 = 5.9 µM, SI > 5.1), with an additional antioxidant activity (IC50 = 7.45 µM) against neuronal t-BOOH-induced oxidative stress and neuroprotective ability against neurotoxicity elicited by both t-BOOH and OAß1-42, and a moderate ability to interfere in Aß1-42 aggregates, with low cytotoxicity and good predictive druggability properties, suggesting a multifunctional pharmacological profile suitable for further drug development against AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Fármacos Neuroprotetores , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides , Antioxidantes/farmacologia , Inibidores da Colinesterase/química , Desenho de Fármacos , Humanos , Hidrazonas/farmacologia , Hidrazonas/uso terapêutico , Ligantes , Estrutura Molecular , Neuroblastoma/tratamento farmacológico , Fármacos Neuroprotetores/química , Piperidinas/química , Relação Estrutura-Atividade
4.
Neurochem Res ; 45(12): 3003-3020, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33079324

RESUMO

A new series of ten multifunctional Cinnamoyl-N-acylhydrazone-donepezil hybrids was synthesized and evaluated as multifunctional ligands against neurodegenerative diseases. The molecular hybridization approach was based on the combination of 1-benzyl-4-piperidine fragment from the anti-Alzheimer AChE inhibitor donepezil (1) and the cinnamoyl subunit from curcumin (2), a natural product with remarkable antioxidant, neuroprotective and anti-inflammatory properties, using a N-acylhydrazone fragment as a spacer subunit. Compounds 4a and 4d showed moderate inhibitory activity towards AChE with IC50 values of 13.04 and 9.1 µM, respectively. In addition, compound 4a and 4d showed a similar predicted binding mode to that observed for donepezil in the molecular docking studies. On the other hand, compounds 4a and 4c exhibited significant radical scavenging activity, showing the best effects on the DPPH test and also exhibited a significant protective neuronal cell viability exposed to t-BuOOH and against 6-OHDA insult to prevent the oxidative stress in Parkinson's disease. Similarly, compound 4c was capable to prevent the ROS formation, with indirect antioxidant activity increasing intracellular GSH levels and the ability to counteract the neurotoxicity induced by both OAß1-42 and 3-NP. In addition, ADMET in silico prediction indicated that both compounds 4a and 4c did not show relevant toxic effects. Due to their above-mentioned biological properties, compounds 4a and 4c could be explored as lead compounds in search of more effective and low toxic small molecules with multiple neuroprotective effects for neurodegenerative diseases.


Assuntos
Cinamatos/farmacologia , Donepezila/farmacologia , Hidrazonas/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase/metabolismo , Butirilcolinesterase/metabolismo , Linhagem Celular Tumoral , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/metabolismo , Inibidores da Colinesterase/farmacocinética , Inibidores da Colinesterase/farmacologia , Cinamatos/síntese química , Cinamatos/metabolismo , Cinamatos/farmacocinética , Donepezila/síntese química , Donepezila/metabolismo , Donepezila/farmacocinética , Sequestradores de Radicais Livres/síntese química , Sequestradores de Radicais Livres/metabolismo , Sequestradores de Radicais Livres/farmacocinética , Sequestradores de Radicais Livres/farmacologia , Humanos , Hidrazonas/síntese química , Hidrazonas/metabolismo , Hidrazonas/farmacocinética , Ligantes , Simulação de Acoplamento Molecular , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacocinética , Ligação Proteica , Relação Estrutura-Atividade
5.
Molecules ; 25(14)2020 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-32664425

RESUMO

Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that involves different pathogenic mechanisms. In this regard, the goal of this study was the design and synthesis of new compounds with multifunctional pharmacological activity by molecular hybridization of structural fragments of curcumin and resveratrol connected by an N-acyl-hydrazone function linked to a 1,4-disubstituted triazole system. Among these hybrid compounds, derivative 3e showed the ability to inhibit acetylcholinesterase activity, the intracellular formation of reactive oxygen species as well as the neurotoxicity elicited by Aß42 oligomers in neuronal SH-SY5Y cells. In parallel, compound 3e showed a good profile of safety and ADME parameters. Taken together, these results suggest that 3e could be considered a lead compound for the further development of AD therapeutics.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Triazóis/química , Triazóis/farmacologia , Acetilcolinesterase/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Células Cultivadas , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacocinética , Inibidores da Colinesterase/farmacologia , Curcumina/farmacocinética , Curcumina/farmacologia , Humanos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacocinética , Fármacos Neuroprotetores/farmacologia , Farmacocinética , Espécies Reativas de Oxigênio/metabolismo , Resveratrol/farmacocinética , Resveratrol/farmacologia , Triazóis/farmacocinética
6.
Int J Mol Sci ; 20(10)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31100781

RESUMO

Curcumin is a natural polyphenol component of Curcuma longa Linn, which is currently considered one of the most effective nutritional antioxidants for counteracting free radical-related diseases. Several experimental data have highlighted the pleiotropic neuroprotective effects of curcumin, due to its activity in multiple antioxidant and anti-inflammatory pathways involved in neurodegeneration. Although its poor systemic bioavailability after oral administration and low plasma concentrations represent restrictive factors for curcumin therapeutic efficacy, innovative delivery formulations have been developed in order to overwhelm these limitations. This review provides a summary of the main findings involving the heme oxygenase/biliverdin reductase system as a valid target in mediating the potential neuroprotective properties of curcumin. Furthermore, pharmacokinetic properties and concerns about curcumin's safety profile have been addressed.


Assuntos
Curcumina/farmacologia , Heme Oxigenase (Desciclizante)/farmacologia , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Disponibilidade Biológica , Curcuma/química , Curcumina/química , Radicais Livres , Humanos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/farmacologia
7.
Molecules ; 23(8)2018 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30061534

RESUMO

Alzheimer's disease still represents an untreated multifaceted pathology, and drugs able to stop or reverse its progression are urgently needed. In this paper, a series of naturally inspired chalcone-based derivatives were designed as structural simplification of our previously reported benzofuran lead compound, aiming at targeting both acetyl (AChE)- and butyryl (BuChE) cholinesterases that, despite having been studied for years, still deserve considerable attention. In addition, the new compounds could also modulate different pathways involved in disease progression, due to the peculiar trans-α,ß-unsaturated ketone in the chalcone framework. All molecules presented in this study were evaluated for cholinesterase inhibition on the human enzymes and for antioxidant and neuroprotective activities on a SH-SY5Y cell line. The results proved that almost all the new compounds were low micromolar inhibitors, showing different selectivity depending on the appended substituent; some of them were also effective antioxidant and neuroprotective agents. In particular, compound 4, endowed with dual AChE/BuChE inhibitory activity, was able to decrease ROS formation and increase GSH levels, resulting in enhanced antioxidant endogenous defense. Moreover, this compound also proved to counteract the neurotoxicity elicited by Aß1⁻42 oligomers, showing a promising neuroprotective potential.


Assuntos
Acetilcolinesterase/química , Antioxidantes/síntese química , Butirilcolinesterase/química , Chalconas/síntese química , Inibidores da Colinesterase/síntese química , Fármacos Neuroprotetores/síntese química , Nootrópicos/síntese química , Acetilcolinesterase/genética , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/enzimologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/farmacologia , Antioxidantes/farmacologia , Butirilcolinesterase/genética , Butirilcolinesterase/metabolismo , Domínio Catalítico , Linhagem Celular Tumoral , Chalconas/farmacologia , Inibidores da Colinesterase/farmacologia , Proteínas Ligadas por GPI/química , Proteínas Ligadas por GPI/genética , Proteínas Ligadas por GPI/metabolismo , Expressão Gênica , Glutationa/agonistas , Glutationa/metabolismo , Humanos , Simulação de Acoplamento Molecular , Neurônios/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/farmacologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Espécies Reativas de Oxigênio/antagonistas & inibidores , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
8.
Molecules ; 23(7)2018 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-30037040

RESUMO

Chalcones have shown a broad spectrum of biological activities with clinical potential against various diseases. The biological activities are mainly attributed to the presence in the chalcones of the α,ß-unsaturated carbonyl system, perceived as a potential Michael acceptor. Chalcones could activate the Kelch-like ECH-associated protein 1 (Keap1)/Nuclear factor erythroid 2-related factor 2 (Nrf2) pathway through a Michael addition reaction with the cysteines of Keap1, which acts as a redox sensor and negative regulator of Nrf2. This modification allows the dissociation of Nrf2 from the cytoplasmic complex with Keap1 and its nuclear translocation. At this level, Nrf2 binds to the antioxidant response element (ARE) and activates the expression of several detoxification, antioxidant and anti-inflammatory genes as well as genes involved in the clearance of damaged proteins. In this regard, the Keap1/Nrf2⁻ARE pathway is a new potential pharmacological target for the treatment of many chronic diseases. In this review we summarize the current progress in the study of Keap1/Nrf2⁻ARE pathway activation by natural and synthetic chalcones and their potential pharmacological applications. Among the pharmacological activities highlighted, anti-inflammatory activity was more evident than others, suggesting a multi-target Michael acceptor mechanism for the chalcones involving key regulators of the Nrf2 and nuclear factor- κB (NF-κB) pathways.


Assuntos
Elementos de Resposta Antioxidante , Chalconas/farmacologia , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Chalconas/química , Humanos
9.
Molecules ; 21(5)2016 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-27196880

RESUMO

Alzheimer's disease (AD) has been defined as a multi-factorial disorder resulting from a complex array of networked cellular and molecular mechanisms. In particular, elevated levels of Aß protein and its aggregation products in the presence of metal ions proved to be highly neurotoxic and therapeutic strategies aimed at preventing Aß generation and oxidative stress may represent an effective approach for AD treatment. A recent paradigm for the treatment of complex diseases such as AD suggests the employment of multifunctional compounds, single chemical entities capable of simultaneously modulating different targets involved in the pathology. In this paper, the "pharmacophores combination" strategy was applied, connecting the main scaffold of the BACE-1 ligand 1 to that of the chalcone 2, as metal chelating pharmacophore, to obtain a small library of compounds. Conjugate 5 emerged as the most interesting derivative, proving to inhibit BACE-1 with low-micromolar potency, and showing neuroprotective effects. In particular, 5 proved to be able to protect from metal-associated oxidative stress by hampering intracellular Cu(2+)-induced ROS formation without any direct neurotoxic effect.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Chalcona/administração & dosagem , Fármacos Neuroprotetores/administração & dosagem , Agregação Patológica de Proteínas/tratamento farmacológico , Doença de Alzheimer/patologia , Secretases da Proteína Precursora do Amiloide/química , Peptídeos beta-Amiloides/química , Ácido Aspártico Endopeptidases/química , Chalcona/química , Quelantes/administração & dosagem , Quelantes/química , Combinação de Medicamentos , Humanos , Íons/química , Ligantes , Metais/química , Fármacos Neuroprotetores/química , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo
10.
Plants (Basel) ; 13(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38592786

RESUMO

Teucrium chamaedrys L. is a typical European-Mediterranean species of the genus Teucrium. Among the phenolic compounds belonging to phenylethanoid glycosides (PGs), teucrioside (TS) is only found in this species, and it was previously demonstrated to be produced by in vitro-elicited cell cultures at levels higher than those found in leaves. However, T. chamaedrys cell suspension extracts (Cell-Ex) and pure TS have not been investigated yet for any biological effects. In this study, we evaluated the antioxidant and anti-melanogenesis activity of both Cell-Ex and TS in B16-F10 mouse melanoma cells. The results showed that Cell-Ex inhibited the reactive oxygen species formation evoked in B16-F10 cells by tert-butyl hydroperoxide and 5 J/cm2 of UVA, as well as the melanin increase stimulated by α-MSH or 20 J/cm2 of UVA. In parallel, a TS concentration equivalent to that present in Cell-Ex recorded the same biological effect profile, suggesting the main contribution of TS to the antioxidant and anti-melanogenic properties of Cell-Ex. Both Cell-Ex and TS also modulated the melanogenesis pathway through their ability to inhibit the tyrosinase activity both in a cell-free system and in B16-F10 cells stimulated by α-MSH. These results support the potential cosmeceutical use of Cell-Ex for protection against photooxidative damage and hyperpigmentation.

11.
Chem Biol Interact ; 395: 111026, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38679115

RESUMO

In the pursuit of novel antioxidant therapies for the prevention and treatment of neurodegenerative diseases, three new arylpiperazine derivatives (LQFM181, LQFM276, and LQFM277) were synthesized through a molecular hybridization approach involving piribedil and butylated hydroxytoluene lead compounds. To evaluate the antioxidant and neuroprotective activities of the arylpiperazine derivatives, we employed an integrated approach using both in vitro (SH-SY5Y cells) and in vivo (neurotoxicity induced by 3-nitropropionic acid in Swiss mice) models. In the in vitro tests, LQFM181 showed the most promising antioxidant activity at the neuronal membrane and cytoplasmic levels, and significant neuroprotective activity against the neurotoxicity induced by 3-nitropropionic acid. Hence, this compound was further subjected to in vivo evaluation, which demonstrated remarkable antioxidant capacity such as reduction of MDA and carbonyl protein levels, increased activities of succinate dehydrogenase, catalase, and superoxide dismutase. Interestingly, using the same in vivo model, LQFM181 also reduced locomotor behavior and memory dysfunction through its ability to decrease cholinesterase activity. Consequently, LQFM181 emerges as a promising candidate for further investigation into its neuroprotective potential, positioning it as a new therapeutic agent for neuroprotection.


Assuntos
Antioxidantes , Fármacos Neuroprotetores , Nitrocompostos , Piperazinas , Propionatos , Animais , Propionatos/toxicidade , Nitrocompostos/toxicidade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Camundongos , Piperazinas/farmacologia , Piperazinas/química , Humanos , Linhagem Celular Tumoral , Antioxidantes/farmacologia , Masculino , Succinato Desidrogenase/metabolismo , Superóxido Dismutase/metabolismo , Catalase/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Malondialdeído/metabolismo , Estresse Oxidativo/efeitos dos fármacos
12.
J Clin Med ; 12(3)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36769818

RESUMO

The production of reactive oxygen species (ROS) in the brain is homeostatically controlled and contributes to normal neural functions. Inefficiency of control mechanisms in brain aging or pathological conditions leads to ROS overproduction with oxidative neural cell damage and degeneration. Among the compounds showing therapeutic potential against neuro-dysfunctions induced by oxidative stress are the guanine-based purines (GBPs), of which the most characterized are the nucleoside guanosine (GUO) and the nucleobase guanine (GUA), which act differently. Indeed, the administration of GUO to in vitro or in vivo models of acute brain injury (ischemia/hypoxia or trauma) or chronic neurological/neurodegenerative disorders, exerts neuroprotective and anti-inflammatory effects, decreasing the production of reactive radicals and improving mitochondrial function via multiple molecular signals. However, GUO administration to rodents also causes an amnesic effect. In contrast, the metabolite, GUA, could be effective in memory-related disorders by transiently increasing ROS production and stimulating the nitric oxide/soluble guanylate cyclase/cGMP/protein kinase G cascade, which has long been recognized as beneficial for cognitive function. Thus, it is worth pursuing further studies to ascertain the therapeutic role of GUO and GUA and to evaluate the pathological brain conditions in which these compounds could be more usefully used.

13.
ACS Chem Neurosci ; 14(11): 1963-1970, 2023 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-37218653

RESUMO

Glycogen synthase kinase 3ß (GSK-3ß) is a serine/threonine kinase and an attractive therapeutic target for Alzheimer's disease. Based on proteolysis-targeting chimera (PROTAC) technology, a small set of novel GSK-3ß degraders was designed and synthesized by linking two different GSK-3ß inhibitors, SB-216763 and tideglusib, to pomalidomide, as E3 recruiting element, through linkers of different lengths. Compound 1 emerged as the most effective PROTAC being nontoxic up to 20 µM to neuronal cells and already able to degrade GSK-3ß starting from 0.5 µM in a dose-dependent manner. PROTAC 1 significantly reduced the neurotoxicity induced by Aß25-35 peptide and CuSO4 in SH-SY5Y cells in a dose-dependent manner. Based on its encouraging features, PROTAC 1 may serve as a starting point to develop new GSK-3ß degraders as potential therapeutic agents.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Doença de Alzheimer/tratamento farmacológico , Glicogênio Sintase Quinase 3 beta , Proteínas Serina-Treonina Quinases , Fosforilação
14.
Eur J Med Chem ; 252: 115297, 2023 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-36996713

RESUMO

Simultaneous modulation of multifaceted toxicity arising from neuroinflammation, oxidative stress, and mitochondrial dysfunction represents a valuable therapeutic strategy to tackle Alzheimer's disease. Among the significant hallmarks of the disorder, Aß protein and its aggregation products are well-recognised triggers of the neurotoxic cascade. In this study, by tailored modification of the curcumin-based lead compound 1, we aimed at developing a small library of hybrid compounds targeting Aß protein oligomerisation and the consequent neurotoxic events. Interestingly, from in vitro studies, analogues 3 and 4, bearing a substituted triazole moiety, emerged as multifunctional agents able to counteract Aß aggregation, neuroinflammation and oxidative stress. In vivo proof-of-concept evaluations, performed in a Drosophila oxidative stress model, allowed us to identify compound 4 as a promising lead candidate.


Assuntos
Doença de Alzheimer , Curcumina , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Curcumina/farmacologia , Curcumina/uso terapêutico , Peptídeos beta-Amiloides/metabolismo , Doenças Neuroinflamatórias , Estresse Oxidativo
15.
Toxicology ; 465: 153033, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34774662

RESUMO

Chronic exposure to aluminium (Al) can contribute to the progression of several neurological and neurodegenerative diseases. Al is a metal that promotes oxidative damage leading to neuronal death in different brain regions with behavior, cognition, and memory deficits. Chrysin is a flavonoid found mainly in honey, passion fruit, and propolis with antioxidant, anti-inflammatory, and cytoprotective properties. In this study, we used an integrated approach of in vitro and in vivo studies to evaluate the antioxidant and neuroprotective effects of chrysin against the neurotoxicity elicited by aluminium chloride (AlCl3). In in vitro studies, chrysin (5 µM) showed the ability to counteract the early oxidative stress elicited by tert-butyl hydroperoxide, an oxidant that mimics the lipid peroxidation and Fenton reaction in presence of AlCl3 as well as the late necrotic death triggered by AlCl3 in neuronal SH-SY5Y cells. In vivo studies in a mouse model of neurotoxicity induced by chronic exposure to AlCl3 (100 mg/kg/day) for ninety days then corroborated the antioxidant and neuroprotective effect of chrysin (10, 30, and 100 mg/kg/day) using the oral route. In particular, chrysin reduced the cognitive impairment induced by AlCl3 as well as normalized the acetylcholinesterase and butyrylcholinesterase activities in the hippocampus. In parallel, chrysin counteracted the oxidative damage, in terms of lipid peroxidation, protein carbonylation, catalase, and superoxide dismutase impairment, in the brain cortex and hippocampus. Lastly, necrotic cells frequency in the same brain regions was also decreased by chrysin. These results highlight the ability of chrysin to prevent the neurotoxic effects associated with chronic exposure to Al and suggest its potential use as a food supplement for brain health.


Assuntos
Encéfalo/efeitos dos fármacos , Flavonoides/farmacologia , Neurônios/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Síndromes Neurotóxicas/prevenção & controle , Acetilcolinesterase/metabolismo , Cloreto de Alumínio , Animais , Anti-Inflamatórios/farmacologia , Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Butirilcolinesterase/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Proteínas Ligadas por GPI/metabolismo , Humanos , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Necrose , Neurônios/metabolismo , Neurônios/patologia , Síndromes Neurotóxicas/etiologia , Síndromes Neurotóxicas/metabolismo , Síndromes Neurotóxicas/patologia , Estresse Oxidativo/efeitos dos fármacos , Carbonilação Proteica/efeitos dos fármacos , Células THP-1
16.
RSC Med Chem ; 13(5): 568-584, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35694691

RESUMO

A new series of eight multifunctional thalidomide-donepezil hybrids were synthesized based on the multi-target-directed ligand strategy and evaluated as potential neuroprotective, cholinesterase inhibitors and anti-neuroinflammatory agents against neurodegenerative diseases. A molecular hybridization approach was used for structural design by combining the N-benzylpiperidine pharmacophore of donepezil and the isoindoline-1,3-dione fragment from the thalidomide structure. The most promising compound, PQM-189 (3g), showed good AChE inhibitory activity with an IC50 value of 3.15 µM, which was predicted by docking studies as interacting with the enzyme in the same orientation observed in the AChE-donepezil complex and a similar profile of interaction. Additionally, compound 3g significantly decreased iNOS and IL-1ß levels by 43% and 39%, respectively, after 24 h of incubation with lipopolysaccharide. In vivo data confirmed the ability of 3g to prevent locomotor impairment and changes in feeding behavior elicited by lipopolysaccharide. Moreover, the PAMPA assay evidenced adequate blood-brain barrier and gastrointestinal tract permeabilities with an Fa value of 69.8%. Altogether, these biological data suggest that compound 3g can treat the inflammatory process and oxidative stress resulting from the overexpression of iNOS and therefore the increase in reactive nitrogen species, and regulate the release of pro-inflammatory cytokines such as IL-1ß. In this regard, compound PQM-189 (3g) was revealed to be a promising neuroprotective and anti-neuroinflammatory agent with an innovative thalidomide-donepezil-based hybrid molecular architecture.

17.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34681268

RESUMO

Huntington's disease (HD) is a neurodegenerative disorder caused by an abnormal CAG trinucleotide repeat expansion within exon 1 of the huntingtin (HTT) gene. This mutation leads to the production of mutant HTT (mHTT) protein which triggers neuronal death through several mechanisms. Here, we investigated the neuroprotective effects of esculetin (ESC), a bioactive phenolic compound, in an inducible PC12 model and a transgenic Drosophila melanogaster model of HD, both of which express mHTT fragments. ESC partially inhibited the progression of mHTT aggregation and reduced neuronal death through its ability to counteract the oxidative stress and mitochondria impairment elicited by mHTT in the PC12 model. The ability of ESC to counteract neuronal death was also confirmed in the transgenic Drosophila model. Although ESC did not modify the lifespan of the transgenic Drosophila, it still seemed to have a positive impact on the HD phenotype of this model. Based on our findings, ESC may be further studied as a potential neuroprotective agent in a rodent transgenic model of HD.

18.
Antioxidants (Basel) ; 9(6)2020 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-32630394

RESUMO

Oxidative stress (OS) appears to be an important determinant during the different stages of progression of Alzheimer's Disease (AD). In particular, impaired antioxidant defense mechanisms, such as the decrease of glutathione (GSH) and nuclear factor erythroid 2 (NF-E2)-related factor 2 (Nrf2), a master regulator of antioxidant genes, including those for GSH, are associated with OS in the human AD brain. Among the neuropathological hallmarks of AD, the soluble oligomers of amyloid beta (A) peptides seem to promote neuronal death through mitochondrial dysfunction and OS. In this regard, bifunctional antioxidants can exert a dual neuroprotective role by scavenging reactive oxygen species (ROS) directly and concomitant induction of antioxidant genes. In this study, among natural coumarins (esculetin, scopoletin, fraxetin and daphnetin), we demonstrated the ability of esculetin (ESC) to prevent and counteract ROS formation in neuronal SH-SY5Y cells, suggesting its profile as a bifunctional antioxidant. In particular, ESC increased the resistance of the SH-SY5Y cells against OS through the activation of Nrf2 and increase of GSH. In similar experimental conditions, ESC could also protect the SH-SY5Y cells from the OS and neuronal death evoked by oligomers of A1-42 peptides. Further, the use of the inhibitors PD98059 and LY294002 also showed that Erk1/2 and Akt signaling pathways were involved in the neuroprotection mediated by ESC. These results encourage further research in AD models to explore the efficacy and safety profile of ESC as a novel neuroprotective agent.

19.
ACS Chem Neurosci ; 11(17): 2728-2740, 2020 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-32663009

RESUMO

Common copathogenic factors, including oxidative stress and neuroinflammation, are found to play a vital role in the development of neurodegenerative disorders, including Alzheimer's disease (AD) and Parkinson's disease (PD). Nowadays, owing to the multifactorial character of the diseases, no effective therapies are available, thus underlying the need for new strategies. Overexpression of the enzyme GSK-3ß and downregulation of the Nrf2/ARE pathway are responsible for a decrease in antioxidant defense effects. These pieces of evidence underline the usefulness of dual GSK-3ß inhibitors/Nrf2 inducers. In this regard, to design a dual modulator, the structures of a curcumin-based analogue, as GSK-3ß inhibitor, and a diethyl fumarate fragment, as Nrf2 inducer, were combined. Among the hybrids, 5 and 6 proved to effectively inhibit GSK-3ß, while 4 and 5 showed a marked ability to activate Nrf2 together to increase the neuronal resistance to oxidative stress. These last pieces of evidence translated into specific neuroprotective effects of 4 and 5 against PD pathological events including neurotoxicity elicited by α-synuclein aggregates and 6-hydroxydopamine. Hybrid 5 also showed neuroprotective effects in a C. elegans model of PD where the activation of GSK-3ß is intimately involved in Nrf2 regulation. In summary, 5 emerged as an interesting multitarget derivative, valuable to be exploited in a multitarget PD perspective.


Assuntos
Curcumina , Doença de Parkinson , Animais , Caenorhabditis elegans , Curcumina/farmacologia , Fumaratos , Glicogênio Sintase Quinase 3 beta , Fator 2 Relacionado a NF-E2 , Doença de Parkinson/tratamento farmacológico
20.
Antioxidants (Basel) ; 9(5)2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32365615

RESUMO

The purpose of this work was the optimization of the extraction from spent coffee grounds, specifically 100% Arabica coffee blends, using a desirability approach. Spent coffees were recovered after the preparation of the espresso coffee under the typical conditions used in coffee bars with a professional machine. Spent coffee was subjected to different extraction procedures in water: by changing the extraction temperature (60, 80, or 100 °C) and the solvent extraction volume (10, 20, 30 mL for 1 gram of coffee) and by maintaining constant the extraction time (30 minutes). The ranges of the process parameters, as well as the solvent to be used, were established by running preliminary experiments not reported here. The variables of interest for the experimental screening design were the content of caffeine, trigonelline, and nicotinic acid, quantitatively determined from regression lines of standard solutions of known concentrations by a validated HPLC-VWD method. Since solvent extraction volumes and temperatures were revealed to be the most significant process variables, for the optimization of the extraction process, an approach based on Response Surface Methodology (RSM) was considered. In particular, a Box-Wilson Central Composite Design, commonly named central composite design (CCD), was used to find the optimal conditions of the extraction process. Moreover, the desirability approach was then applied to maximize the extraction efficiency by searching the optimal values (or at least the best compromise solution) for all three response variables simultaneously. Successively, the best extract, obtained in a volume of 20 mL of water at an extraction temperature of 80 °C, was analyzed for total phenol content (TPC) through the Folin-Ciocalteu assay, and the antioxidant capacities (AC) through the trolox equivalent (TE) antioxidant capacity (DPPH), ferric-ion reducing antioxidant parameter (FRAP), and radical cation scavenging activity and reducing power (ABTS). The TPC and the AC for spent coffee were high and comparable to the results obtained in previous similar studies. Then, the extract was evaluated by inductively coupled plasma mass spectrometry (ICP-MS), revealing that potassium was the most abundant element, followed by phosphorus, magnesium, calcium, sodium, and sulfur, while very low content in heavy metals was observed. Preliminary in vitro assays in keratinocyte HaCaT cells were carried out to assess the safety, in terms of cytotoxicity of spent coffee, and results showed that cell viability depends on the extract concentration: cell viability is unmodified up to a concentration of 0.3 mg/mL, over which it becomes cytotoxic for the cells. Spent coffee extract at 0.03 and 0.3 mg/mL showed the ability to reduce intracellular reactive oxygen species formation induced by hydrogen peroxide in HaCaT cells, suggesting its antioxidant activity at intracellular levels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA