Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
1.
Mol Biol Evol ; 40(5)2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37030000

RESUMO

Plasmodium falciparum, the most virulent agent of human malaria, spread from Africa to all continents following the out-of-Africa human migrations. During the transatlantic slave trade between the 16th and 19th centuries, it was introduced twice independently to the Americas where it adapted to new environmental conditions (new human populations and mosquito species). Here, we analyzed the genome-wide polymorphisms of 2,635 isolates across the current P. falciparum distribution range in Africa, Asia, Oceania, and the Americas to investigate its genetic structure, invasion history, and selective pressures associated with its adaptation to the American environment. We confirmed that American populations originated from Africa with at least two independent introductions that led to two genetically distinct clusters, one in the North (Haiti and Colombia) and one in the South (French Guiana and Brazil), and an admixed Peruvian group. Genome scans revealed recent and more ancient signals of positive selection in the American populations. Particularly, we detected positive selection signals in genes involved in interactions with hosts (human and mosquito) cells and in genes involved in resistance to malaria drugs in both clusters. Analyses suggested that for five genes, adaptive introgression between clusters or selection on standing variation was at the origin of this repeated evolution. This study provides new genetic evidence on P. falciparum colonization history and on its local adaptation in the Americas.


Assuntos
Malária Falciparum , Plasmodium falciparum , Humanos , Animais , Plasmodium falciparum/genética , Metagenômica , Malária Falciparum/genética , América , Polimorfismo Genético
2.
PLoS Genet ; 17(2): e1009269, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33630855

RESUMO

Malaria remains a major public health problem in many countries. Unlike influenza and HIV, where diversity in immunodominant surface antigens is understood geographically to inform disease surveillance, relatively little is known about the global population structure of PfEMP1, the major variant surface antigen of the malaria parasite Plasmodium falciparum. The complexity of the var multigene family that encodes PfEMP1 and that diversifies by recombination, has so far precluded its use in malaria surveillance. Recent studies have demonstrated that cost-effective deep sequencing of the region of var genes encoding the PfEMP1 DBLα domain and subsequent classification of within host sequences at 96% identity to define unique DBLα types, can reveal structure and strain dynamics within countries. However, to date there has not been a comprehensive comparison of these DBLα types between countries. By leveraging a bioinformatic approach (jumping hidden Markov model) designed specifically for the analysis of recombination within var genes and applying it to a dataset of DBLα types from 10 countries, we are able to describe population structure of DBLα types at the global scale. The sensitivity of the approach allows for the comparison of the global dataset to ape samples of Plasmodium Laverania species. Our analyses show that the evolution of the parasite population emerging out of Africa underlies current patterns of DBLα type diversity. Most importantly, we can distinguish geographic population structure within Africa between Gabon and Ghana in West Africa and Uganda in East Africa. Our evolutionary findings have translational implications in the context of globalization. Firstly, DBLα type diversity can provide a simple diagnostic framework for geographic surveillance of the rapidly evolving transmission dynamics of P. falciparum. It can also inform efforts to understand the presence or absence of global, regional and local population immunity to major surface antigen variants. Additionally, we identify a number of highly conserved DBLα types that are present globally that may be of biological significance and warrant further characterization.


Assuntos
Antígenos de Protozoários/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Proteínas de Protozoários/genética , Variação Antigênica , Evolução Molecular , Gabão , Gana , Humanos , Malária Falciparum/epidemiologia , Cadeias de Markov , Modelos Estatísticos , Domínios Proteicos , Proteínas de Protozoários/metabolismo , Uganda
3.
Nature ; 542(7639): 101-104, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28117441

RESUMO

Elucidation of the evolutionary history and interrelatedness of Plasmodium species that infect humans has been hampered by a lack of genetic information for three human-infective species: P. malariae and two P. ovale species (P. o. curtisi and P. o. wallikeri). These species are prevalent across most regions in which malaria is endemic and are often undetectable by light microscopy, rendering their study in human populations difficult. The exact evolutionary relationship of these species to the other human-infective species has been contested. Using a new reference genome for P. malariae and a manually curated draft P. o. curtisi genome, we are now able to accurately place these species within the Plasmodium phylogeny. Sequencing of a P. malariae relative that infects chimpanzees reveals similar signatures of selection in the P. malariae lineage to another Plasmodium lineage shown to be capable of colonization of both human and chimpanzee hosts. Molecular dating suggests that these host adaptations occurred over similar evolutionary timescales. In addition to the core genome that is conserved between species, differences in gene content can be linked to their specific biology. The genome suggests that P. malariae expresses a family of heterodimeric proteins on its surface that have structural similarities to a protein crucial for invasion of red blood cells. The data presented here provide insight into the evolution of the Plasmodium genus as a whole.


Assuntos
Evolução Molecular , Genoma/genética , Malária/parasitologia , Plasmodium malariae/genética , Plasmodium ovale/genética , Animais , Eritrócitos/parasitologia , Feminino , Genômica , Humanos , Pan troglodytes/parasitologia , Filogenia
4.
Am J Hum Genet ; 104(3): 553-561, 2019 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-30827499

RESUMO

The hemoglobin ßS sickle mutation is a textbook case in which natural selection maintains a deleterious mutation at high frequency in the human population. Homozygous individuals for this mutation develop sickle-cell disease, whereas heterozygotes benefit from higher protection against severe malaria. Because the overdominant ßS allele should be purged almost immediately from the population in the absence of malaria, the study of the evolutionary history of this iconic mutation can provide important information about the history of human exposure to malaria. Here, we sought to increase our understanding of the origins and time depth of the ßS mutation in populations with different lifestyles and ecologies, and we analyzed the diversity of HBB in 479 individuals from 13 populations of African farmers and rainforest hunter-gatherers. Using an approximate Bayesian computation method, we estimated the age of the ßS allele while explicitly accounting for population subdivision, past demography, and balancing selection. When the effects of balancing selection are taken into account, our analyses indicate a single emergence of ßS in the ancestors of present-day agriculturalist populations ∼22,000 years ago. Furthermore, we show that rainforest hunter-gatherers have more recently acquired the ßS mutation from the ancestors of agriculturalists through adaptive gene flow during the last ∼6,000 years. Together, our results provide evidence for a more ancient exposure to malarial pressures among the ancestors of agriculturalists than previously appreciated, and they suggest that rainforest hunter-gatherers have been increasingly exposed to malaria during the last millennia.


Assuntos
Adaptação Fisiológica , Evolução Biológica , População Negra/genética , Genética Populacional , Hemoglobina Falciforme/genética , Malária/epidemiologia , Seleção Genética , África/epidemiologia , Agricultura , Anemia Falciforme/genética , Anemia Falciforme/patologia , Florestas , Fluxo Gênico , Humanos , Incidência , Malária/genética , Malária/parasitologia , Floresta Úmida
5.
PLoS Biol ; 17(10): e3000490, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31613878

RESUMO

Many important infectious diseases are the result of zoonoses, in which pathogens that normally infect animals acquire mutations that enable the breaching of species barriers to permit the infection of humans. Our understanding of the molecular events that enable host switching are often limited, and yet this is a fundamentally important question. Plasmodium falciparum, the etiological agent of severe human malaria, evolved following a zoonotic transfer of parasites from gorillas. One gene-rh5-which encodes an essential ligand for the invasion of host erythrocytes, is suspected to have played a critical role in this host switch. Genome comparisons revealed an introgressed sequence in the ancestor of P. falciparum containing rh5, which likely allowed the ancestral parasites to infect both gorilla and human erythrocytes. To test this hypothesis, we resurrected the ancestral introgressed reticulocyte-binding protein homologue 5 (RH5) sequence and used quantitative protein interaction assays to demonstrate that this ancestral protein could bind the basigin receptor from both humans and gorillas. We also showed that this promiscuous receptor binding phenotype of RH5 was shared with the parasite clade that transferred its genome segment to the ancestor of P. falciparum, while the other lineages exhibit host-specific receptor binding, confirming the central importance of this introgression event for Plasmodium host switching. Finally, since its transfer to humans, P. falciparum, and also the RH5 ligand, have evolved a strong human specificity. We show that this subsequent restriction to humans can be attributed to a single amino acid mutation in the RH5 sequence. Our findings reveal a molecular pathway for the origin and evolution of human P. falciparum malaria and may inform molecular surveillance to predict future zoonoses.


Assuntos
Basigina/genética , Proteínas de Transporte/genética , Genoma de Protozoário , Malária Falciparum/transmissão , Malária Falciparum/veterinária , Plasmodium falciparum/genética , Substituição de Aminoácidos , Animais , Basigina/química , Basigina/metabolismo , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Eritrócitos/parasitologia , Expressão Gênica , Introgressão Genética , Gorilla gorilla/parasitologia , História Antiga , Especificidade de Hospedeiro , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/história , Modelos Moleculares , Mutação , Filogenia , Plasmodium falciparum/classificação , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Ligação Proteica , Estrutura Secundária de Proteína , Zoonoses
6.
Malar J ; 21(1): 141, 2022 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505431

RESUMO

Malaria is a vector-borne disease caused by protozoan parasites of the genus Plasmodium. Plasmodium vivax is the most prevalent human-infecting species in the Americas. However, the origins of this parasite in this continent are still debated. Similarly, it is now accepted that the existence of Plasmodium simium is explained by a P. vivax transfer from humans to monkey in America. However, many uncertainties still exist concerning the origin of the transfer and whether several transfers occurred. In this review, the most recent studies that addressed these questions using genetic and genomic approaches are presented.


Assuntos
Malária , Plasmodium , Evolução Biológica , Genoma , Humanos , Malária/parasitologia , Plasmodium/genética , Plasmodium vivax/genética
7.
PLoS Biol ; 16(8): e2006035, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30142149

RESUMO

Although Plasmodium vivax is responsible for the majority of malaria infections outside Africa, little is known about its evolution and pathway to humans. Its closest genetic relative, P. vivax-like, was discovered in African great apes and is hypothesized to have given rise to P. vivax in humans. To unravel the evolutionary history and adaptation of P. vivax to different host environments, we generated using long- and short-read sequence technologies 2 new P. vivax-like reference genomes and 9 additional P. vivax-like genotypes. Analyses show that the genomes of P. vivax and P. vivax-like are highly similar and colinear within the core regions. Phylogenetic analyses clearly show that P. vivax-like parasites form a genetically distinct clade from P. vivax. Concerning the relative divergence dating, we show that the evolution of P. vivax in humans did not occur at the same time as the other agents of human malaria, thus suggesting that the transfer of Plasmodium parasites to humans happened several times independently over the history of the Homo genus. We further identify several key genes that exhibit signatures of positive selection exclusively in the human P. vivax parasites. Two of these genes have been identified to also be under positive selection in the other main human malaria agent, P. falciparum, thus suggesting their key role in the evolution of the ability of these parasites to infect humans or their anthropophilic vectors. Finally, we demonstrate that some gene families important for red blood cell (RBC) invasion (a key step of the life cycle of these parasites) have undergone lineage-specific evolution in the human parasite (e.g., reticulocyte-binding proteins [RBPs]).


Assuntos
Plasmodium vivax/genética , Plasmodium/genética , Animais , Sequência de Bases/genética , Culicidae , Eritrócitos/parasitologia , Evolução Molecular , Genoma/genética , Humanos , Malária/parasitologia , Malária Falciparum/parasitologia , Malária Vivax/genética , Pan troglodytes/genética , Filogenia , Plasmodium falciparum/genética
8.
Proc Natl Acad Sci U S A ; 113(19): 5329-34, 2016 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-27071123

RESUMO

Recent studies have highlighted the large diversity of malaria parasites infecting African great apes (subgenus Laverania) and their strong host specificity. Although the existence of genetic incompatibilities preventing the cross-species transfer may explain host specificity, the existence of vectors with a high preference for a determined host represents another possibility. To test this hypothesis, we undertook a 15-mo-long longitudinal entomological survey in two forest regions of Gabon, where wild apes live, at different heights under the canopy. More than 2,400 anopheline mosquitoes belonging to 18 species were collected. Among them, only three species of Anopheles were found infected with ape Plasmodium: Anopheles vinckei, Anopheles moucheti, and Anopheles marshallii Their role in transmission was confirmed by the detection of the parasites in their salivary glands. Among these species, An. vinckei showed significantly the highest prevalence of infection and was shown to be able to transmit parasites of both chimpanzees and gorillas. Transmission was also shown to be conditioned by seasonal factors and by the heights of capture under the canopy. Moreover, human landing catches of sylvan Anopheles demonstrated the propensity of these three vector species to feed on humans when available. Our results suggest therefore that the strong host specificity observed in the Laveranias is not linked to a specific association between the vertebrate host and the vector species and highlight the potential role of these vectors as bridge between apes and humans.


Assuntos
Anopheles/parasitologia , Vetores de Doenças/classificação , Hominidae/microbiologia , Hominidae/parasitologia , Malária/parasitologia , Plasmodium/isolamento & purificação , Animais , Gabão , Humanos , Floresta Úmida , Especificidade da Espécie , Zoonoses/microbiologia , Zoonoses/parasitologia
9.
Proc Natl Acad Sci U S A ; 112(22): 7051-4, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25941403

RESUMO

Sickle cell disease (SCD) is a genetic disorder that poses a serious health threat in tropical Africa, which the World Health Organization has declared a public health priority. Its persistence in human populations has been attributed to the resistance it provides to Plasmodium falciparum malaria in its heterozygous state, called sickle cell trait (SCT). Because of migration, SCT is becoming common outside tropical countries: It is now the most important genetic disorder in France, affecting one birth for every 2,400, and one of the most common in the United States. We assess the strength of the association between SCT and malaria, using current data for both SCT and malaria infections. A total of 3,959 blood samples from 195 villages distributed over the entire Republic of Gabon were analyzed. Hemoglobin variants were identified by using HPLCy (HPLC). Infections by three species of Plasmodium were detected by PCR followed by sequencing of a 201-bp fragment of cytochrome b. An increase of 10% in P. falciparum malaria prevalence is associated with an increase by 4.3% of SCT carriers. An increase of 10 y of age is associated with an increase by 5.5% of SCT carriers. Sex is not associated with SCT. These strong associations show that malaria remains a selective factor in current human populations, despite the progress of medicine and the actions undertaken to fight this disease. Our results provide evidence that evolution is still present in humans, although this is sometimes questioned by scientific, political, or religious personalities.


Assuntos
Anemia Falciforme/epidemiologia , Anemia Falciforme/genética , Evolução Biológica , Malária Falciparum/epidemiologia , Malária Falciparum/genética , Plasmodium/genética , Seleção Genética , Fatores Etários , Sequência de Bases , Cromatografia Líquida de Alta Pressão , Estudos de Coortes , Gabão/epidemiologia , Humanos , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Especificidade da Espécie
10.
Proc Natl Acad Sci U S A ; 110(20): 8123-8, 2013 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-23637341

RESUMO

Plasmodium vivax is considered to be absent from Central and West Africa because of the protective effect of Duffy negativity. However, there are reports of persons returning from these areas infected with this parasite and observations suggesting the existence of transmission. Among the possible explanations for this apparent paradox, the existence of a zoonotic reservoir has been proposed. May great apes be this reservoir? We analyze the mitochondrial and nuclear genetic diversity of P. vivax parasites isolated from great apes in Africa and compare it to parasites isolated from travelers returning from these regions of Africa, as well as to human isolates distributed all over the world. We show that the P. vivax sequences from parasites of great apes form a clade genetically distinct from the parasites circulating in humans. We show that this clade's parasites can be infectious to humans by describing the case of a traveler returning from the Central African Republic infected with one of them. The relationship between this P. vivax clade in great apes and the human isolates is discussed.


Assuntos
Evolução Molecular , Especificidade de Hospedeiro , Malária/parasitologia , Plasmodium vivax/genética , Adulto , Animais , República Centro-Africana , Culicidae/parasitologia , DNA Mitocondrial/genética , Variação Genética , Genoma , Haplótipos , Hominidae/parasitologia , Humanos , Masculino , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Fatores de Tempo
11.
Malar J ; 14: 395, 2015 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-26450086

RESUMO

BACKGROUND: There have been many reports on the population genetic structure of Plasmodium falciparum from different endemic regions especially sub-Saharan Africa. However, few studies have been performed on neglected populations, such as the Pygmy populations. In this study, the population genetic structure of P. falciparum was investigated in the Baka Pygmies of Gabon and compared to that observed in neighboring villages composed mostly of Bantu farmers. METHODS: A total of 342 blood samples were collected from 170 Baka Pygmies and 172 Bantus in the north of Gabon (Woleu Ntem Province). Plasmodium infections were characterized by sequencing a portion of the parasite cytochrome b gene. Population genetic structure of P. falciparum in the different villages was analysed using microsatellite markers and genes coding for antigenic proteins (MSP1, MSP2, GLURP, and EBA-175). RESULTS: Overall, prevalence of P. falciparum was around 57 % and no significant difference of prevalence was observed between Pygmies and Bantus. No significant differences of population genetic structure of P. falciparum was found between Pygmy and Bantu people except for one antigen-coding gene, glurp, for which genetic data suggested the existence of a potentially disruptive selection acting on this gene in the two types of populations. The genetic structure of P. falciparum followed a pattern of isolation by distance at the scale of the study. CONCLUSION: The prevalence and genetic diversity of P. falciparum observed in Baka demonstrates a significant transmission of the parasite in this population, and some exchanges of parasites with Bantu neighbours. Despite that, some antigen-coding genes seem to have had a particular evolutionary trajectory in certain Pygmy populations due to specific local human and/or mosquito characteristics.


Assuntos
Variação Genética , Malária Falciparum/parasitologia , Plasmodium falciparum/classificação , Plasmodium falciparum/genética , Sangue/parasitologia , Citocromos b/genética , Transmissão de Doença Infecciosa , Etnicidade , Gabão/epidemiologia , Humanos , Malária Falciparum/epidemiologia , Malária Falciparum/transmissão , Repetições de Microssatélites , Epidemiologia Molecular , Plasmodium falciparum/isolamento & purificação , Prevalência , Proteínas de Protozoários/genética , Análise de Sequência de DNA
12.
Malar J ; 14: 220, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-26032157

RESUMO

Although Plasmodium infections have never been clearly associated with symptoms in non-human primates, the question of the pathogenicity of Plasmodium parasites in non-human primates still remains unanswered. A young chimpanzee, followed before and after release to a sanctuary, in a semi-free ranging enclosure located in an equatorial forest, showed fever and strong anaemia associated with a high Plasmodium reichenowi infection, shortly after release. The animal recovered from anaemia after several months despite recurrent infection with other Plasmodium species. This may be the first description of malaria-like symptoms in a chimpanzee infected with Plasmodium.


Assuntos
Malária , Pan troglodytes/parasitologia , Plasmodium , Anemia/parasitologia , Anemia/veterinária , Animais , Peso Corporal , Feminino , Malária/parasitologia , Malária/fisiopatologia , Malária/veterinária
13.
Malar J ; 14: 111, 2015 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-25889049

RESUMO

BACKGROUND: Until 2009, the Laverania subgenus counted only two representatives: Plasmodium falciparum and Plasmodium reichenowi. The recent development of non-invasive methods allowed re-exploration of plasmodial diversity in African apes. Although a large number of great ape populations have now been studied regarding Plasmodium infections in Africa, there are still vast areas of their distribution that remained unexplored. Gabon constitutes an important part of the range of western central African great ape subspecies (Pan troglodytes troglodytes and Gorilla gorilla gorilla), but has not been studied so far. In the present study, the diversity of Plasmodium species circulating in great apes in Gabon was analysed. METHODS: The analysis of 1,261 faecal samples from 791 chimpanzees and 470 gorillas collected from 24 sites all over Gabon was performed. Plasmodium infections were characterized by amplification and sequencing of a portion of the Plasmodium cytochrome b gene. RESULTS: The analysis of the 1,261 samples revealed that at least six Plasmodium species circulate in great apes in Gabon (Plasmodium praefalciparum, Plasmodium gorA (syn Plasmodium adleri), Plasmodium gorB (syn Plasmodium blacklocki) in gorillas and Plasmodium gaboni, P. reichenowi and Plasmodium billcollinsi in chimpanzees). No new phylogenetic lineages were discovered. The average infection rate was 21.3% for gorillas and 15.4% for chimpanzees. A logistic regression showed that the probability of infection was significantly dependent on the freshness of the droppings but not of the host species or of the average pluviometry of the months of collection.


Assuntos
Doenças dos Símios Antropoides/epidemiologia , Gorilla gorilla , Malária/veterinária , Pan troglodytes , Plasmodium/genética , Proteínas de Protozoários/genética , Animais , Doenças dos Símios Antropoides/parasitologia , Gabão/epidemiologia , Malária/epidemiologia , Malária/parasitologia , Dados de Sequência Molecular , Filogenia , Plasmodium/classificação , Plasmodium/isolamento & purificação , Proteínas de Protozoários/metabolismo , Análise de Sequência de DNA/veterinária
14.
Proc Natl Acad Sci U S A ; 109(2): 511-6, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22203975

RESUMO

The origin of Plasmodium falciparum in South America is controversial. Some studies suggest a recent introduction during the European colonizations and the transatlantic slave trade. Other evidence--archeological and genetic--suggests a much older origin. We collected and analyzed P. falciparum isolates from different regions of the world, encompassing the distribution range of the parasite, including populations from sub-Saharan Africa, the Middle East, Southeast Asia, and South America. Analyses of microsatellite and SNP polymorphisms show that the populations of P. falciparum in South America are subdivided in two main genetic clusters (northern and southern). Phylogenetic analyses, as well as Approximate Bayesian Computation methods suggest independent introductions of the two clusters from African sources. Our estimates of divergence time between the South American populations and their likely sources favor a likely introduction from Africa during the transatlantic slave trade.


Assuntos
Demografia , Emigração e Imigração , Variação Genética , Filogenia , Plasmodium falciparum/genética , Teorema de Bayes , Análise por Conglomerados , Genética Populacional , Humanos , Modelos Logísticos , Repetições de Microssatélites/genética , Modelos Genéticos , Filogeografia , Plasmodium falciparum/classificação , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , América do Sul
15.
Mol Ecol ; 23(8): 1979-93, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24834503

RESUMO

Pathogens, which have recently colonized a new host species or new populations of the same host, are interesting models for understanding how populations may evolve in response to novel environments. During its colonization of South America from Africa, Plasmodium falciparum, the main agent of malaria, has been exposed to new conditions in distinctive new human populations (Amerindian and populations of mixed origins) that likely exerted new selective pressures on the parasite's genome. Among the genes that might have experienced strong selective pressures in response to these environmental changes, the eba genes (erythrocyte-binding antigens genes), which are involved in the invasion of the human red blood cells, constitute good candidates. In this study, we analysed, in South America, the polymorphism of three eba genes (eba-140, eba-175, eba-181) and compared it to the polymorphism observed in African populations. The aim was to determine whether these genes faced selective pressures in South America distinct from what they experienced in Africa. Patterns of genetic variability of these genes were compared to the patterns observed at two housekeeping genes (adsl and serca) and 272 SNPs to separate adaptive effects from demographic effects. We show that, conversely to Africa, eba-140 seemed to be under stronger diversifying selection in South America than eba-175. In contrast, eba-181 did not show any sign of departure from neutrality. These changes in the patterns of selection on the eba genes could be the consequence of changes in the host immune response, the host receptor polymorphisms and/or the ability of the parasite to silence or express differentially its invasion proteins.


Assuntos
Antígenos de Protozoários/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Seleção Genética , África , Proteínas de Transporte/genética , DNA de Protozoário/genética , Eritrócitos/parasitologia , Genética Populacional , Humanos , Proteínas de Membrana , Dados de Sequência Molecular , Análise de Sequência de DNA , América do Sul
16.
Proc Natl Acad Sci U S A ; 108(29): 11948-53, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21730135

RESUMO

Recent molecular exploration of the Plasmodium species circulating in great apes in Africa has revealed the existence of a large and previously unknown diversity of Plasmodium. For instance, gorillas were found to be infected by parasites closely related to Plasmodium falciparum, suggesting that the human malignant malaria agent may have arisen after a transfer from gorillas. Although this scenario is likely in light of the data collected in great apes, it remained to be ascertained whether P. falciparum-related parasites may infect other nonhuman primates in Africa. Using molecular tools, we here explore the diversity of Plasmodium species infecting monkeys in Central Africa. In addition to previously described Hepatocystis and Plasmodium species (Plasmodium gonderi and Plasmodium sp DAJ-2004), we have found one African monkey to be infected by a P. falciparum-related parasite. Examination of the nuclear and mitochondrial genomes of this parasite reveals that it is specific of nonhuman primates, indicating that P. falciparum-related pathogens can naturally circulate in some monkey populations in Africa. We also show that at least two distinct genetic entities of P. falciparum infect nonhuman primates and humans, respectively. Our discoveries bring into question the proposed gorilla origin of human P. falciparum.


Assuntos
Cercopithecidae , Malária Falciparum/veterinária , Doenças dos Macacos/epidemiologia , Doenças dos Macacos/parasitologia , Filogenia , Plasmodium falciparum/genética , Animais , Sequência de Bases , Primers do DNA/genética , Transferência Ressonante de Energia de Fluorescência , Gabão/epidemiologia , Funções Verossimilhança , Malária Falciparum/epidemiologia , Repetições de Microssatélites/genética , Modelos Genéticos , Dados de Sequência Molecular , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Mutação/genética , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal , Análise de Sequência de DNA , Especificidade da Espécie
17.
Infect Genet Evol ; 122: 105607, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38806078

RESUMO

Caliciviruses (Caliciviridae) and astroviruses (Astroviridae) are among the leading cause of non-bacterial foodborne disease and gastroenteritis in human. These non-enveloped RNA viruses infect a wide range of vertebrate species including rodents. Rodents are among the most important hosts of infectious diseases globally and are responsible for over 80 zoonotic pathogens that affect humans. Therefore, screening pathogens in rodents will be is necessary to prevent cross-species transmission to prevent zoonotic outbreaks. In the present study, we screened caliciviruses and astroviruses in order to describe their diversity and whether they harbor strains that can infect humans. RNA was then extracted from intestine samples of 245 rodents and retrotranscribed in cDNA to screen caliciviruses and astroviruses by PCRs. All the samples tested negative for caliciviruses and while astroviruses were detected in 18 (7.3%) samples of Rattus rattus species. Phylogenetic analyses based on the RdRp gene showed that all the sequences belonged to Mamastrovirus genus in which they were genetically related to R. rattus related AstVs previously detected in Gabon or in Rattus spp. AstV from Kenya and Asia. These findings suggested that transportation such as land and railway, as well national and international trade, are likely to facilitate spread of AstVs by the dissemination of rodents.


Assuntos
Infecções por Astroviridae , Astroviridae , Infecções por Caliciviridae , Caliciviridae , Filogenia , Animais , Astroviridae/genética , Astroviridae/classificação , Astroviridae/isolamento & purificação , Infecções por Caliciviridae/virologia , Infecções por Caliciviridae/epidemiologia , Infecções por Caliciviridae/transmissão , Infecções por Astroviridae/virologia , Infecções por Astroviridae/veterinária , Infecções por Astroviridae/epidemiologia , Infecções por Astroviridae/transmissão , Caliciviridae/genética , Caliciviridae/isolamento & purificação , Caliciviridae/classificação , Roedores/virologia , Comércio , Ratos , Humanos
18.
PLoS Pathog ; 7(2): e1001283, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21383971

RESUMO

From which host did the most malignant human malaria come: birds, primates, or rodents? When did the transfer occur? Over the last half century, these have been some of the questions up for debate about the origin of Plasmodium falciparum, the most common and deadliest human malaria parasite, which is responsible for at least one million deaths every year. Recent findings bring elements in favor of a transfer from great apes, but are these evidences really solid? What are the grey areas that remain to be clarified? Here, we examine in depth these new elements and discuss how they modify our perception of the origin and evolution of P. falciparum. We also discuss the perspectives these new discoveries open.


Assuntos
Evolução Biológica , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Infecções Protozoárias em Animais/parasitologia , Animais , Animais Selvagens/parasitologia , Humanos , Malária Falciparum/genética , Malária Falciparum/transmissão , Pan troglodytes/parasitologia , Filogenia , Infecções Protozoárias em Animais/genética , Infecções Protozoárias em Animais/transmissão , Zoonoses/parasitologia , Zoonoses/transmissão
19.
Nature ; 445(7130): 915-918, 2007 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-17287725

RESUMO

Infection of the stomach by Helicobacter pylori is ubiquitous among humans. However, although H. pylori strains from different geographic areas are associated with clear phylogeographic differentiation, the age of an association between these bacteria with humans remains highly controversial. Here we show, using sequences from a large data set of bacterial strains that, as in humans, genetic diversity in H. pylori decreases with geographic distance from east Africa, the cradle of modern humans. We also observe similar clines of genetic isolation by distance (IBD) for both H. pylori and its human host at a worldwide scale. Like humans, simulations indicate that H. pylori seems to have spread from east Africa around 58,000 yr ago. Even at more restricted geographic scales, where IBD tends to become blurred, principal component clines in H. pylori from Europe strongly resemble the classical clines for Europeans described by Cavalli-Sforza and colleagues. Taken together, our results establish that anatomically modern humans were already infected by H. pylori before their migrations from Africa and demonstrate that H. pylori has remained intimately associated with their human host populations ever since.


Assuntos
Emigração e Imigração , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Helicobacter pylori/fisiologia , Filogenia , África/epidemiologia , Ásia , Europa (Continente) , Variação Genética , Geografia , Infecções por Helicobacter/epidemiologia , História Antiga , Humanos , Epidemiologia Molecular , Dados de Sequência Molecular
20.
Proc Natl Acad Sci U S A ; 107(4): 1458-63, 2010 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-20133889

RESUMO

Plasmodium reichenowi, a chimpanzee parasite, was until very recently the only known close relative of Plasmodium falciparum, the most virulent agent of human malaria. Recently, Plasmodium gaboni, another closely related chimpanzee parasite, was discovered, suggesting that the diversity of Plasmodium circulating in great apes in Africa might have been underestimated. It was also recently shown that P. reichenowi is a geographically widespread and genetically diverse chimpanzee parasite and that the world diversity of P. falciparum is fully included within the much broader genetic diversity of P. reichenowi. The evidence indicates that all extant populations of P. falciparum originated from P. reichenowi, likely by a single transfer from chimpanzees. In this work, we have studied the diversity of Plasmodium species infecting chimpanzees and gorillas in Central Africa (Cameroon and Gabon) from both wild-living and captive animals. The studies in wild apes used noninvasive sampling methods. We confirm the presence of P. reichenowi and P. gaboni in wild chimpanzees. Moreover, our results reveal the existence of an unexpected genetic diversity of Plasmodium lineages circulating in gorillas. We show that gorillas are naturally infected by two related lineages of parasites that have not been described previously, herein referred to as Plasmodium GorA and P. GorB, but also by P. falciparum, a species previously considered as strictly human specific. The continuously increasing contacts between humans and primate populations raise concerns about further reciprocal host transfers of these pathogens.


Assuntos
Gorilla gorilla/genética , Interações Hospedeiro-Parasita , Pan troglodytes/genética , Filogenia , Plasmodium falciparum/genética , Plasmodium/genética , Animais , Camarões , Fezes/parasitologia , Gabão , Gorilla gorilla/sangue , Gorilla gorilla/parasitologia , Humanos , Pan troglodytes/sangue , Pan troglodytes/parasitologia , Plasmodium/fisiologia , Plasmodium falciparum/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA