Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Plant Cell ; 35(6): 2349-2368, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-36814410

RESUMO

Proper cell-type identity relies on highly coordinated regulation of gene expression. Regulatory elements such as enhancers can produce cell type-specific expression patterns, but the mechanisms underlying specificity are not well understood. We previously identified an enhancer region capable of driving specific expression in giant cells, which are large, highly endoreduplicated cells in the Arabidopsis thaliana sepal epidermis. In this study, we use the giant cell enhancer as a model to understand the regulatory logic that promotes cell type-specific expression. Our dissection of the enhancer revealed that giant cell specificity is mediated primarily through the combination of two activators and one repressor. HD-ZIP and TCP transcription factors are involved in the activation of expression throughout the epidermis. High expression of HD-ZIP transcription factor genes in giant cells promoted higher expression driven by the enhancer in giant cells. Dof transcription factors repressed the activity of the enhancer such that only giant cells maintained enhancer activity. Thus, our data are consistent with a conceptual model whereby cell type-specific expression emerges from the combined activities of three transcription factor families activating and repressing expression in epidermal cells.


Assuntos
Arabidopsis , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Homeodomínio/genética , Sequências Reguladoras de Ácido Nucleico , Regulação da Expressão Gênica , Arabidopsis/metabolismo , Células Gigantes/metabolismo , Elementos Facilitadores Genéticos/genética
2.
Plant Cell Physiol ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37847120

RESUMO

B-Box-containing zinc finger transcription factors (BBX) are involved in light-mediated growth, affecting processes such as hypocotyl elongation in Arabidopsis thaliana. However, the molecular and hormonal framework that regulates plant growth through BBX proteins is incomplete. Here, we demonstrate that BBX21 inhibits the hypocotyl elongation through the brassinosteroid (BR) pathway. BBX21 reduces the sensitivity to 24-epiBL, a synthetic active BR, principally at very-low concentrations in simulated shade. The biosynthesis profile of BRs showed that two active BR -brassinolide (BL) and 28-homobrassinolide (28-homoBL)- and 8 of 11 intermediates can be repressed by BBX21 under white light (WL) or simulated shade. Furthermore, BBX21 represses the expression of CYTOCHROME P450 90B1 (DWF4/CYP90B1), BRASSINOSTEROID-6-OXIDASE 1 (BR6OX1, CYP85A1) and BR6OX2 (CYP85A2) genes involved in the BR biosynthesis in WL while specifically promoting DWF4 and PHYB ACTIVATION TAGGED SUPPRESSOR 1 (CYP2B1/BAS1) expression in WL supplemented with far-red (WL+FR), a treatment that simulates shade. In addition, BBX21 represses BR signalling genes such as PACLOBUTRAZOL RESISTANCE1 (PRE1), PRE3 and ARABIDOPSIS MYB-LIKE 2 (MYBL2), and auxin-related and expansin genes, such as INDOLE-3-ACETIC ACID INDUCIBLE 1 (IAA1), IAA4 and EXPANSIN 11 (EXP11) in short-term shade. By a genetic approach we found that BBX21 acts genetically upstream of BRASSINAZOLE-RESISTANT 1 (BZR1) for the promotion of DWF4 and BAS1 gene expression in shade. We propose that BBX21 integrates the BR homeostasis and shade-light signalling allowing the fine-tuning of hypocotyl elongation in Arabidopsis.

3.
Nature ; 517(7534): 377-80, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25363783

RESUMO

Plant stem cells in the shoot apical meristem (SAM) and root apical meristem are necessary for postembryonic development of aboveground tissues and roots, respectively, while secondary vascular stem cells sustain vascular development. WUSCHEL (WUS), a homeodomain transcription factor expressed in the rib meristem of the Arabidopsis SAM, is a key regulatory factor controlling SAM stem cell populations, and is thought to establish the shoot stem cell niche through a feedback circuit involving the CLAVATA3 (CLV3) peptide signalling pathway. WUSCHEL-RELATED HOMEOBOX 5 (WOX5), which is specifically expressed in the root quiescent centre, defines quiescent centre identity and functions interchangeably with WUS in the control of shoot and root stem cell niches. WOX4, expressed in Arabidopsis procambial cells, defines the vascular stem cell niche. WUS/WOX family proteins are evolutionarily and functionally conserved throughout the plant kingdom and emerge as key actors in the specification and maintenance of stem cells within all meristems. However, the nature of the genetic regime in stem cell niches that centre on WOX gene function has been elusive, and molecular links underlying conserved WUS/WOX function in stem cell niches remain unknown. Here we demonstrate that the Arabidopsis HAIRY MERISTEM (HAM) family of transcription regulators act as conserved interacting cofactors with WUS/WOX proteins. HAM and WUS share common targets in vivo and their physical interaction is important in driving downstream transcriptional programs and in promoting shoot stem cell proliferation. Differences in the overlapping expression patterns of WOX and HAM family members underlie the formation of diverse stem cell niche locations, and the HAM family is essential for all of these stem cell niches. These findings establish a new framework for the control of stem cell production during plant development.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Células-Tronco/citologia , Células-Tronco/metabolismo , Transcrição Gênica , Arabidopsis/genética , Proliferação de Células , Histona Acetiltransferases/metabolismo , Proteínas de Homeodomínio/metabolismo , Brotos de Planta/citologia , Brotos de Planta/genética , Ligação Proteica , Nicho de Células-Tronco
4.
Proc Natl Acad Sci U S A ; 115(19): E4503-E4511, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29686058

RESUMO

Integration of environmental signals and interactions among photoreceptors and transcriptional regulators is key in shaping plant development. TANDEM ZINC-FINGER PLUS3 (TZP) is an integrator of light and photoperiodic signaling that promotes flowering in Arabidopsis thaliana Here we elucidate the molecular role of TZP as a positive regulator of hypocotyl elongation. We identify an interacting partner for TZP, the transcription factor ZINC-FINGER HOMEODOMAIN 10 (ZFHD10), and characterize its function in coregulating the expression of blue-light-dependent transcriptional regulators and growth-promoting genes. By employing a genome-wide approach, we reveal that ZFHD10 and TZP coassociate with promoter targets enriched in light-regulated elements. Furthermore, using a targeted approach, we show that ZFHD10 recruits TZP to the promoters of key coregulated genes. Our findings not only unveil the mechanism of TZP action in promoting hypocotyl elongation at the transcriptional level but also assign a function to an uncharacterized member of the ZFHD transcription factor family in promoting plant growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Hipocótilo/crescimento & desenvolvimento , Regiões Promotoras Genéticas , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Hipocótilo/genética , Fotoperíodo , Transativadores/genética , Fatores de Transcrição/genética , Transcrição Gênica , Dedos de Zinco
5.
PLoS Genet ; 13(6): e1006856, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28628608

RESUMO

Photoperiod is one of the most reliable environmental cues for plants to regulate flowering timing. In Arabidopsis thaliana, CONSTANS (CO) transcription factor plays a central role in regulating photoperiodic flowering. In contrast to posttranslational regulation of CO protein, still little was known about CO transcriptional regulation. Here we show that the CINCINNATA (CIN) clade of class II TEOSINTE BRANCHED 1/ CYCLOIDEA/ PROLIFERATING CELL NUCLEAR ANTIGEN FACTOR (TCP) proteins act as CO activators. Our yeast one-hybrid analysis revealed that class II CIN-TCPs, including TCP4, bind to the CO promoter. TCP4 induces CO expression around dusk by directly associating with the CO promoter in vivo. In addition, TCP4 binds to another flowering regulator, GIGANTEA (GI), in the nucleus, and induces CO expression in a GI-dependent manner. The physical association of TCP4 with the CO promoter was reduced in the gi mutant, suggesting that GI may enhance the DNA-binding ability of TCP4. Our tandem affinity purification coupled with mass spectrometry (TAP-MS) analysis identified all class II CIN-TCPs as the components of the in vivo TCP4 complex, and the gi mutant did not alter the composition of the TCP4 complex. Taken together, our results demonstrate a novel function of CIN-TCPs as photoperiodic flowering regulators, which may contribute to coordinating plant development with flowering regulation.


Assuntos
Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Flores/genética , Fatores de Transcrição/genética , Transcrição Gênica , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Ritmo Circadiano/genética , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Mutação , Fotoperíodo , Desenvolvimento Vegetal/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Regiões Promotoras Genéticas
6.
Plant Physiol ; 177(4): 1650-1665, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29884679

RESUMO

The water stress-associated hormone abscisic acid (ABA) acts through a well-defined signal transduction cascade to mediate downstream transcriptional events important for acclimation to stress. Although ABA signaling is known to function in specific tissues to regulate root growth, little is understood regarding the spatial pattern of ABA-mediated transcriptional regulation. Here, we describe the construction and evaluation of an ABSCISIC ACID RESPONSIVE ELEMENT (ABRE)-based synthetic promoter reporter that reveals the transcriptional response of tissues to different levels of exogenous ABA and stresses. Genome-scale yeast one-hybrid screens complemented these approaches and revealed how promoter sequence and architecture affect the recruitment of diverse transcription factors (TFs) to the ABRE. Our analysis also revealed ABA-independent activity of the ABRE-reporter under nonstress conditions, with expression being enriched at the quiescent center and stem cell niche. We show that the WUSCHEL RELATED HOMEOBOX5 and NAC DOMAIN PROTEIN13 TFs regulate QC/SCN expression of the ABRE reporter, which highlights the convergence of developmental and DNA-damage signaling pathways onto this cis-element in the absence of water stress. This work establishes a tool to study the spatial pattern of ABA-mediated transcriptional regulation and a repertoire of TF-ABRE interactions that contribute to the developmental and environmental control of gene expression in roots.


Assuntos
Ácido Abscísico/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Genes Reporter , Regiões Promotoras Genéticas , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacologia , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dano ao DNA , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Plantas Geneticamente Modificadas , Elementos de Resposta , Transdução de Sinais/genética , Análise Espaço-Temporal , Estresse Fisiológico/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Leveduras/genética
7.
Nucleic Acids Res ; 45(18): e157, 2017 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-28985361

RESUMO

Gene-centered yeast one-hybrid (Y1H) screens provide a powerful and effective strategy to identify transcription factor (TF)-promoter interactions. While genome-wide TF ORFeome clone collections are increasingly available, screening protocols have limitations inherent to the properties of the enzymatic reaction used to identify interactions and to the procedure required to perform the assay in a high-throughput format. Here, we present the development and validation of a streamlined strategy for quantitative and fully automated gene-centered Y1H screens using a novel cell surface Gaussia luciferase reporter.


Assuntos
Genes Reporter , Ensaios de Triagem em Larga Escala/métodos , Luciferases/genética , Técnicas do Sistema de Duplo-Híbrido , Automação Laboratorial , Sítios de Ligação/genética , Regulação da Expressão Gênica/genética , Técnicas de Transferência de Genes , Organismos Geneticamente Modificados , Regiões Promotoras Genéticas , Ligação Proteica , Elementos Reguladores de Transcrição/genética , Saccharomyces cerevisiae , Fatores de Transcrição/metabolismo
8.
Proc Natl Acad Sci U S A ; 112(30): 9166-73, 2015 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-26139525

RESUMO

The plant hormone salicylic acid (SA) is essential for local defense and systemic acquired resistance (SAR). When plants, such as Arabidopsis, are challenged by different pathogens, an increase in SA biosynthesis generally occurs through transcriptional induction of the key synthetic enzyme isochorismate synthase 1 (ICS1). However, the regulatory mechanism for this induction is poorly understood. Using a yeast one-hybrid screen, we identified two transcription factors (TFs), NTM1-like 9 (NTL9) and CCA1 hiking expedition (CHE), as activators of ICS1 during specific immune responses. NTL9 is essential for inducing ICS1 and two other SA synthesis-related genes, phytoalexin-deficient 4 (PAD4) and enhanced disease susceptibility 1 (EDS1), in guard cells that form stomata. Stomata can quickly close upon challenge to block pathogen entry. This stomatal immunity requires ICS1 and the SA signaling pathway. In the ntl9 mutant, this response is defective and can be rescued by exogenous application of SA, indicating that NTL9-mediated SA synthesis is essential for stomatal immunity. CHE, the second identified TF, is a central circadian clock oscillator and is required not only for the daily oscillation in SA levels but also for the pathogen-induced SA synthesis in systemic tissues during SAR. CHE may also regulate ICS1 through the known transcription activators calmodulin binding protein 60g (CBP60g) and systemic acquired resistance deficient 1 (SARD1) because induction of these TF genes is compromised in the che-2 mutant. Our study shows that SA biosynthesis is regulated by multiple TFs in a spatial and temporal manner and therefore fills a gap in the signal transduction pathway between pathogen recognition and SA production.


Assuntos
Arabidopsis/imunologia , Resistência a Medicamentos , Regulação da Expressão Gênica de Plantas , Nicotiana/imunologia , Imunidade Vegetal , Ácido Salicílico/química , Arabidopsis/genética , Ritmo Circadiano , Microscopia Confocal , Mutação , Oscilometria , Fenótipo , Doenças das Plantas/imunologia , Folhas de Planta , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estômatos de Plantas/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais , Fatores de Tempo , Nicotiana/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
9.
Proc Natl Acad Sci U S A ; 112(34): E4802-10, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26261339

RESUMO

The circadian clock in Arabidopsis exerts a critical role in timing multiple biological processes and stress responses through the regulation of up to 80% of the transcriptome. As a key component of the clock, the Myb-like transcription factor CIRCADIAN CLOCK ASSOCIATED1 (CCA1) is able to initiate and set the phase of clock-controlled rhythms and has been shown to regulate gene expression by binding directly to the evening element (EE) motif found in target gene promoters. However, the precise molecular mechanisms underlying clock regulation of the rhythmic transcriptome, specifically how clock components connect to clock output pathways, is poorly understood. In this study, using ChIP followed by deep sequencing of CCA1 in constant light (LL) and diel (LD) conditions, more than 1,000 genomic regions occupied by CCA1 were identified. CCA1 targets are enriched for a myriad of biological processes and stress responses, providing direct links to clock-controlled pathways and suggesting that CCA1 plays an important role in regulating a large subset of the rhythmic transcriptome. Although many of these target genes are evening expressed and contain the EE motif, a significant subset is morning phased and enriched for previously unrecognized motifs associated with CCA1 function. Furthermore, this work revealed several CCA1 targets that do not cycle in either LL or LD conditions. Together, our results emphasize an expanded role for the clock in regulating a diverse category of genes and key pathways in Arabidopsis and provide a comprehensive resource for future functional studies.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Genoma de Planta , Fatores de Transcrição/genética , Transcriptoma
10.
Proc Natl Acad Sci U S A ; 111(40): 14595-600, 2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25246594

RESUMO

In Arabidopsis, the circadian clock allows the plant to coordinate daily external signals with internal processes, conferring enhanced fitness and growth vigor. Although external cues such as temperature can entrain the clock, an important feature of the clock is the ability to maintain a relatively constant period over a range of physiological temperatures; this ability is referred to as "temperature compensation." However, how temperature actually is perceived and integrated into the clock molecular circuitry remains largely unknown. In an effort to identify additional regulators of the circadian clock, including putative components that could modulate the clock response to changes in environmental signals, we identified in a previous large-scale screen a transcription factor that interacts with and regulates the promoter activity of a core clock gene. In this report, we characterized this transcription factor, flowering basic helix-loop-helix 1 (FBH1) that binds in vivo to the promoter of the key clock gene circadian clock-associated 1 (CCA1) and regulates its expression. We found that upon temperature changes, overexpression of FBH1 alters the pace of CCA1 expression by causing a period shortening and thus preventing the clock from buffering against this change in temperature. Furthermore, as is consistent with the current mechanistic model of feedback loops observed in the clock regulatory network, we also determined that CCA1 binds in vivo to the FBH1 promoter and regulates its expression. Together these results establish a role for FBH1 as a transcriptional modulator of warm temperature signals and clock responses in Arabidopsis.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Relógios Circadianos/genética , Regulação da Expressão Gênica de Plantas , Temperatura , Adaptação Fisiológica/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Retroalimentação Fisiológica , Genótipo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Ligação Proteica , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
11.
Proc Natl Acad Sci U S A ; 111(45): 16172-7, 2014 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-25352668

RESUMO

The circadian clock perceives environmental signals to reset to local time, but the underlying molecular mechanisms are not well understood. Here we present data revealing that a member of the heat shock factor (Hsf) family is involved in the input pathway to the plant circadian clock. Using the yeast one-hybrid approach, we isolated several Hsfs, including Heat Shock Factor B2b (HsfB2b), a transcriptional repressor that binds the promoter of Pseudo Response Regulator 7 (PRR7) at a conserved binding site. The constitutive expression of HsfB2b leads to severely reduced levels of the PRR7 transcript and late flowering and elongated hypocotyls. HsfB2b function is important during heat and salt stress because HsfB2b overexpression sustains circadian rhythms, and the hsfB2b mutant has a short circadian period under these conditions. HsfB2b is also involved in the regulation of hypocotyl growth under warm, short days. Our findings highlight the role of the circadian clock as an integrator of ambient abiotic stress signals important for the growth and fitness of plants.


Assuntos
Proteínas de Arabidopsis/biossíntese , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Relógios Circadianos/fisiologia , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas/fisiologia , Proteínas de Choque Térmico/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Repressoras/biossíntese , Proteínas Repressoras/metabolismo , Estresse Fisiológico/fisiologia , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ligação a DNA/genética , Flores/genética , Flores/metabolismo , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/genética , Hipocótilo/genética , Hipocótilo/metabolismo , Proteínas de Plantas/genética , Proteínas Repressoras/genética , Fatores de Transcrição/genética
12.
Proc Natl Acad Sci U S A ; 111(42): 15267-72, 2014 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-25288754

RESUMO

To compete for nutrients in diverse soil microenvironments, plants proliferate lateral roots preferentially in nutrient-rich zones. For nitrate, root foraging involves local and systemic signaling; however, little is known about the genes that function in the systemic signaling pathway. By using nitrate enhancer DNA to screen a library of Arabidopsis transcription factors in the yeast one-hybrid system, the transcription factor gene TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR1-20 (TCP20) was identified. TCP20, which belongs to an ancient, plant-specific gene family that regulates shoot, flower, and embryo development, was implicated in nitrate signaling by its ability to bind DNA in more than 100 nitrate-regulated genes. Analysis of insertion mutants of TCP20 showed that they had normal primary and lateral root growth on homogenous nitrate media but were impaired in preferential lateral root growth (root foraging) on heterogeneous media in split-root plates. Inhibition of preferential lateral root growth was still evident in the mutants even when ammonium was uniformly present in the media, indicating that the TCP20 response was to nitrate. Comparison of tcp20 mutants with those of nlp7 mutants, which are defective in local control of root growth but not in the root-foraging response, indicated that TCP20 function is independent of and distinct from NLP7 function. Further analysis showed that tcp20 mutants lack systemic control of root growth regardless of the local nitrate concentrations. These results indicate that TCP20 plays a key role in the systemic signaling pathway that directs nitrate foraging by Arabidopsis roots.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Nitratos/metabolismo , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ecossistema , Elementos Facilitadores Genéticos , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Homozigoto , Mutação , Nitrogênio/metabolismo , Fenótipo , Fenômenos Fisiológicos Vegetais , Brotos de Planta/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais/efeitos dos fármacos , Microbiologia do Solo
13.
Plant Cell ; 25(4): 1228-42, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23613197

RESUMO

Plant architecture shows a large degree of developmental plasticity. Some of the key determinants are the timing of the floral transition induced by a systemic flowering signal (florigen) and the branching pattern regulated by key factors such as BRANCHED1 (BRC1). Here, we report that BRC1 interacts with the florigen proteins FLOWERING LOCUS T (FT) and TWIN SISTER OF FT (TSF) but not with TERMINAL FLOWER1, a floral repressor. FT protein induced in leaves moves into the subtended bud, suggesting that FT protein also plays a role in promotion of the floral transition in the axillary meristem (AM). The brc1-2 mutant shows an earlier floral transition in the axillary shoots compared with the wild type, suggesting that BRC1 plays a role in delaying the floral transition of the AMs. Genetic and gene expression analyses suggest that BRC1 interferes with florigen (FT and TSF) function in the AMs. Consistent with this, BRC1 ectopically expressed in the shoot apical meristem delays the floral transition in the main shoot. These results taken together suggest that BRC1 protein interacts with FT and TSF proteins and modulates florigen activity in the axillary buds to prevent premature floral transition of the AMs.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/genética , Meristema/genética , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Florígeno/metabolismo , Flores/crescimento & desenvolvimento , Flores/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Mutação , Proteína de Ligação a Fosfatidiletanolamina/genética , Proteína de Ligação a Fosfatidiletanolamina/metabolismo , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Ligação Proteica , Transporte Proteico , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido
14.
Proc Natl Acad Sci U S A ; 109(8): 3167-72, 2012 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-22315425

RESUMO

The first described feedback loop of the Arabidopsis circadian clock is based on reciprocal regulation between Timing of CAB Expression 1 (TOC1) and Circadian Clock-associated 1 (CCA1)/late elongated hypocotyl (LHY). CCA1 and LHY are Myb transcription factors that bind directly to the TOC1 promoter to negatively regulate its expression. Conversely, the activity of TOC1 has remained less well characterized. Genetic data support that TOC1 is necessary for the reactivation of CCA1/LHY, but there is little description of its biochemical function. Here we show that TOC1 occupies specific genomic regions in the CCA1 and LHY promoters. Purified TOC1 binds directly to DNA through its CCT domain, which is similar to known DNA-binding domains. Chemical induction and transient overexpression of TOC1 in Arabidopsis seedlings cause repression of CCA1/LHY expression, demonstrating that TOC1 can repress direct targets, and mutation or deletion of the CCT domain prevents this repression showing that DNA-binding is necessary for TOC1 action. Furthermore, we use the Gal4/UAS system in Arabidopsis to show that TOC1 acts as a general transcriptional repressor, and that repression activity is in the pseudoreceiver domain of the protein. To identify the genes regulated by TOC1 on a genomic scale, we couple TOC1 chemical induction with microarray analysis and identify previously unexplored potential TOC1 targets and output pathways. Taken together, these results define a biochemical action for the core clock protein TOC1 and refine our perspective on how plant clocks function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Relógios Circadianos , DNA de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Sequência de Bases , Relógios Circadianos/genética , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Dados de Sequência Molecular , Regiões Promotoras Genéticas/genética , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica
15.
Nat Methods ; 8(12): 1053-5, 2011 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-22037706

RESUMO

We present an Arabidopsis thaliana full-length transcription factor resource of 92% of root stele-expressed transcription factors and 74.5% of root-expressed transcription factors. We demonstrate its use with enhanced yeast one-hybrid (eY1H) screening for rapid, systematic mapping of plant transcription factor-promoter interactions. We identified 158 interactions with 13 stele-expressed promoters, many of which occur physically or are regulatory in planta.


Assuntos
Arabidopsis/genética , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Reprodutibilidade dos Testes
16.
Plant Cell ; 22(3): 606-22, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20354196

RESUMO

Regulation of protein turnover mediated by ZEITLUPE (ZTL) constitutes an important mechanism of the circadian clock in Arabidopsis thaliana. Here, we report that FLAVIN BINDING, KELCH REPEAT, F-BOX1 (FKF1) and LOV KELCH PROTEIN2 (LKP2) play similar roles to ZTL in the circadian clock when ZTL is absent. In contrast with subtle circadian clock defects in fkf1, the clock in ztl fkf1 has a considerably longer period than in ztl. In ztl fkf1 lkp2, several clock parameters were even more severely affected than in ztl fkf1. Although LATE ELONGATED HYPOCOTYL (LHY) and CIRCADIAN CLOCK ASSOCIATED1 (CCA1) expression levels are lower in ztl than in the wild type, introducing both fkf1 and lkp2 mutations into the ztl mutant dramatically diminished LHY expression without further affecting CCA1 expression. This demonstrates different contributions of ZTL, FKF1, and LKP2 in the regulation of LHY and CCA1 expression. In addition, FKF1 and LKP2 also interacted with TIMING OF CAB EXPRESSION1 (TOC1) and PSEUDO-RESPONSE REGULATOR5 (PRR5), and both proteins were further stabilized in ztl fkf1 and ztl fkf1 lkp2 compared with in ztl. Our results indicate that ZTL, FKF1, and LKP2 together regulate TOC1 and PRR5 degradation and are major contributors to determining the period of circadian oscillation and enhancing robustness.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Relógios Biológicos/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , DNA de Plantas/genética , Regulação da Expressão Gênica de Plantas , Teste de Complementação Genética , Mutação , Fatores de Transcrição/metabolismo
17.
Curr Protoc Plant Biol ; 4(1): e20086, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30742367

RESUMO

Gene-centered yeast one-hybrid (Y1H) screens using arrayed genome-wide transcription factor (TF) clone collections provide a simple and effective strategy to identify TF-promoter interactions using a DNA fragment as bait. In an effort to improve the assay we recently developed a Y1H system that uses a cell surface Gaussia luciferase reporter (gLUC59). Compared to other available methods, this luciferase-based strategy requires a shorter processing time, enhances the throughput and improves result analysis of gene-centered Y1H screens. Here, we described the procedure to perform high-throughput screens using this novel strategy, which involves a protocol for mating two haploid yeast strains carrying an arrayed TF clone collection and a promoter::gLUC59 reporter, respectively, and a protocol for analyzing gLUC59 activity in the resulting diploid cells. © 2019 by John Wiley & Sons, Inc.


Assuntos
Genes Reporter , Ensaios de Triagem em Larga Escala/métodos , Luciferases/metabolismo , Saccharomyces cerevisiae/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Diploide , Biblioteca Gênica , Medições Luminescentes , Saccharomyces cerevisiae/citologia , Fatores de Transcrição/metabolismo
18.
Dev Cell ; 49(6): 840-851.e8, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31105011

RESUMO

Integration of environmental signals with endogenous biological processes is essential for organisms to thrive in their natural environment. Being entrained by periodic environmental changes, the circadian clock incorporates external information to coordinate physiological processes, phasing them to the optimal time of the day and year. Here, we present a pivotal role for the clock component GIGANTEA (GI) as a genome-wide regulator of transcriptional networks mediating growth and adaptive processes in plants. We provide mechanistic details on how GI integrates endogenous timing with light signaling pathways through the global modulation of PHYTOCHROME-INTERACTING FACTORs (PIFs). Gating of the activity of these transcriptional regulators by GI directly affects a wide array of output rhythms, including photoperiodic growth. Furthermore, we uncover a role for PIFs in mediating light input to the circadian oscillator and show how their regulation by GI is required to set the pace of the clock in response to light-dark cycles.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ritmo Circadiano , Regulação da Expressão Gênica de Plantas , Nicotiana/fisiologia , Fotoperíodo , Proteínas de Arabidopsis/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais
19.
Plant Direct ; 3(1): e00102, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31245750

RESUMO

ARGONAUTES are the central effector proteins of RNA silencing which bind target transcripts in a small RNA-guided manner. Arabidopsis thaliana has 10 ARGONAUTE (AGO) genes, with specialized roles in RNA-directed DNA methylation, post-transcriptional gene silencing, and antiviral defense. To better understand specialization among AGO genes at the level of transcriptional regulation we tested a library of 1497 transcription factors for binding to the promoters of AGO1,AGO10, and AGO7 using yeast 1-hybrid assays. A ranked list of candidate DNA-binding TFs revealed binding of the AGO7 promoter by a number of proteins in two families: the miR156-regulated SPL family and the miR319-regulated TCP family, both of which have roles in developmental timing and leaf morphology. Possible functions for SPL and TCP binding are unclear: we showed that these binding sites are not required for the polar expression pattern of AGO7, nor for the function of AGO7 in leaf shape. Normal AGO7 transcription levels and function appear to depend instead on an adjacent 124-bp region. Progress in understanding the structure of this promoter may aid efforts to understand how the conserved AGO7-triggered TAS3 pathway functions in timing and polarity.

20.
Methods Mol Biol ; 1794: 151-182, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29855956

RESUMO

Identification of transcription factor (TF)-promoter interactions is key to understanding the basic molecular underpinnings of gene regulation. The complexity of gene regulation, however, is driven by the combined function of several TFs recruited to the promoter region, which often confounds the discovery of transcriptional regulatory mechanisms. Genome sequencing enabled the construction of TF-specific ORFeome clone collections that can be used to study TF function with unprecedented coverage. Among the recently developed methods, gene-centered yeast one-hybrid (Y1H) screens performed with these ORFeome collections provide a simple and reliable strategy to identify TF-promoter interactions. Here, we describe high-throughput cloning protocols used to generate a gold standard TF ORFeome collection for the model organism Arabidopsis thaliana. Furthermore, we outline the protocol to build a daughter clone collection suitable for the Y1H assay and a high-throughput Y1H screening procedure that enables rapid assessment of thousands TF-promoter interactions using a robotic platform. These protocols can be universally adopted to build ORFeome libraries and thus expand the usage of gene-centered Y1H screens or other alternative strategies for discovery and characterization of TF functions.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , DNA de Plantas/metabolismo , Ensaios de Triagem em Larga Escala/métodos , Fases de Leitura Aberta , Fatores de Transcrição/metabolismo , Técnicas do Sistema de Duplo-Híbrido , Arabidopsis/genética , Proteínas de Arabidopsis/genética , DNA de Plantas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA