Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(11)2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38894240

RESUMO

The time difference of arrival (TDOA) method has traditionally proven effective for locating acoustic emission (AE) sources and detecting structural defects. Nevertheless, its applicability is constrained when applied to anisotropic materials, particularly in the context of fiber-reinforced composite structures. In response, this paper introduces a novel COmposite LOcalization using Response Surface (COLORS) algorithm based on a two-step approach for precise AE source localization suitable for laminated composite structures. Leveraging a response surface developed from critical parameters, including AE velocity profiles, attenuation rates, distances, and orientations, the proposed method offers precise AE source predictions. The incorporation of updated velocity data into the algorithm yields superior localization accuracy compared to the conventional TDOA approach relying on the theoretical AE propagation velocity. The mean absolute error (MAE) for COLORS and TDOA were found to be 6.97 mm and 8.69 mm, respectively. Similarly, the root mean square error (RMSE) for COLORS and TODA methods were found to be 9.24 mm and 12.06 mm, respectively, indicating better performance of the COLORS algorithm in the context of source location accuracy. The finding underscores the significance of AE signal attenuation in minimizing AE wave velocity discrepancies and enhancing AE localization precision. The outcome of this investigation represents a substantial advancement in AE localization within laminated composite structures, holding potential implications for improved damage detection and structural health monitoring of composite structures.

2.
Sensors (Basel) ; 21(3)2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33503862

RESUMO

Distributed fibre optic sensors (DFOS) are popular for structural health monitoring applications in large engineering infrastructure because of their ability to provide spatial strain measurements continuously along their lengths. Curved paths, particularly semicircular paths, are quite common for optical fibre placement in large structures in addition to straight paths. Optical fibre sensors embedded in a curved path configuration typically measure a component of strain, which often cannot be validated using traditional approaches. Thus, for most applications, strain measured along curved paths is ignored as there is no proper validation tool to ensure the accuracy of the measured strains. To overcome this, an analytical strain transformation equation has been developed and is presented here. This equation transforms the horizontal and vertical strain components obtained along a curved semicircular path into a strain component, which acts tangentially as it travels along the curved fibre path. This approach is validated numerically and experimentally for a DFOS installed on a steel specimen with straight and curved paths. Under tensile and flexural loading scenarios, the horizontal and vertical strain components were obtained numerically using finite element analysis and experimentally using strain rosettes and then, substituted into the proposed strain transformation equation for deriving the transformed strain values. Subsequently, the derived strain values obtained from the proposed transformation equation were validated by comparing them with the experimentally measured DFOS strains in the curved region. Additionally, this study has also shown that a localised damage to the DFOS coating will not impact the functionality of the sensor at the remaining locations along its length. In summary, this paper presents a valid strain transformation equation, which can be used for transforming the numerical simulation results into the DFOS measurements along a semicircular path. This would allow for a larger scope of spatial strains measurements, which would otherwise be ignored in practice.

3.
J Mech Behav Biomed Mater ; 125: 104892, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34688146

RESUMO

OBJECTIVES: To test the hypothesis that restoration of class II mesio-occlusal-distal (MOD) cavities can be strengthened through judicious choice of restoration geometry and material properties. METHODS: An intact extracted human maxillary molar tooth was digitized, segmented, reconstructed, and four 3D restored tooth models were developed with four different restoration geometries: one straight, one single-curved, and two double-curved. Stress analysis was conducted for representative loading using finite element analysis, and maximum principal stresses were determined at the dentine-enamel and restoration-enamel junctions. A range of restorative material elastic moduli (5-80 GPa) and Poisson's ratios (0.25-0.35) were studied. Vertical loads of 400 N were applied on occlusal points, while the roots of the molar teeth, below the crevices, were supported in all directions. All the materials were modelled as homogeneous, isotropic, and elastic. RESULTS: The maximum principal stresses at the restoration-enamel junctions were strongly dependent on the MOD restoration geometries. Peak stresses occurred along the palatal surface of the restoration rather than the opposite buccal surface. Double-curved restorations showed the lowest peak stress at restoration-enamel junctions. Choice of the mechanical properties of restorative material in the range of 5-35 GPa further reduced stress concentrations on the enamel. SIGNIFICANCE: Class II MOD restorations may be stronger if designed with double-curved marginal geometries that can reduce stress concentrations. Designs with convex and concave geometries were particularly effective because they reduced stress concentrations dramatically. Results suggest that relatively minor changes to the geometry of a restoration can have a substantial effect on stress at the restoration-enamel junction and motivate future experimental analysis.


Assuntos
Análise de Elementos Finitos , Humanos
4.
Sci Rep ; 11(1): 1410, 2021 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-33446736

RESUMO

A strain profile measurement technique using a chirped fibre Bragg grating (CFBG) sensor by implementing an integration of differences (IOD) method is reported in this paper. Using the IOD method the spatial distribution of strain along the length of the CFBG is extracted from its power reflectance spectra. As a proof of concept demonstration, the developed technique is applied to measure the polymerisation shrinkage strain profile of a photo-cured polymer dental composite which exhibits a non-uniform strain distribution attributed to the curing lamp characteristics. The result from the CFBG technique is compared with that of an FBG array embedded in the dental composite and is correlated with the degree of conversion of the material which also depends on the curing lamp intensity distribution. This technology will have significant impact and applications in a range of medical, materials and engineering areas where strain or temperature gradient profile measurement is required in smaller scales.

5.
Prosthet Orthot Int ; 44(1): 18-26, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31769736

RESUMO

BACKGROUND: The clinical utility of measuring pressure at the prosthetic socket-residual limb interface is currently unknown. OBJECTIVES: This study aimed to identify whether measuring interface pressure during prosthetic design and fabrication results in closer agreement in pressure measurements between sockets made by different clinicians, and a reduction in pressure over areas of concern. It also investigated whether clinicians value knowing the interface pressure during the fabrication process. STUDY DESIGN: Mixed methods. METHODS: Three prosthetists designed a complete prosthetic system for a transtibial residual limb surrogate. Standardised mechanical testing was performed on each prosthetic system to gain pressure measurements at four key anatomical locations. These measurements were provided to the clinicians, who subsequently modified their sockets as each saw fit. The pressure at each location was re-measured. Each prosthetist completed a survey that evaluated the usefulness of knowing interface pressures during the fabrication process. RESULTS: Feedback and subsequent socket modifications saw a reduction in the pressure measurements at three of the four anatomical locations. Furthermore, the pressure measurements between prosthetists converged. All three prosthetists found value in the pressure measurement system and felt they would use it clinically. CONCLUSIONS: Results suggest that sensors measuring pressure at the socket-limb interface has clinical utility in the context of informing prosthetic socket design and fabrication. If the technology is used at the check socket stage, iterative designs with repeated measurements can result in increased consistency between clinicians for the same residual limb, and reductions in the magnitudes of pressures over specific anatomical landmarks. CLINICAL RELEVANCE: This study provides new information on the value of pressure feedback to the prosthetic socket design process. It shows that with feedback, socket modifications can result in reduced limb pressures, and more consistent pressure distributions between prosthetists. It also justifies the use of pressure feedback in informing clinical decisions.


Assuntos
Membros Artificiais , Próteses e Implantes , Desenho de Prótese , Humanos , Fenômenos Mecânicos , Modelos Anatômicos , Tíbia/cirurgia
6.
Dent Mater ; 32(9): 1113-23, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27431090

RESUMO

OBJECTIVES: The characterization of the physical properties of dental resin composites is fraught with difficulties relating to significant intra and inter test parameter variabilities and is relatively time consuming and expensive. The main aim of this study was to evaluate whether optical fiber Bragg grating (FBG) sensing system may become a viable tool to study dental material characteristics. Of particular focus was the potential for the system to demonstrate a multi parameter all-in-one feature. METHODS: A miniature FBG was embedded in six different dental resin composites and employed as a sensor to evaluate linear polymerization shrinkage, thermal expansion and water sorption. Six commercially available dental composites with different filler types and volume are evaluated. The tests are repeated with three sets of samples. The curing characteristics and residual strain gradient exhibited by the cured dental composites were also observed and commented. RESULTS: Among the studied samples, SDR shows lowest polymerization shrinkage, while Beautifil FO3 shows the highest. The results also show clear distinction between particle filler type and fiber reinforcement based composites in their polymerization shrinkage properties. The agreement of the results with existing literatures show that FBG based system provides accurate results. Polymerization shrinkage rate of the samples are also obtained. Thermal expansion of the composites are measured using the FBG sensing method for the first time and is correlated with resin type, volume, filler type and glass transition temperature. The water sorption characteristics of the dental composite are also successfully measured using the FBG sensing method. The high level of repeatability and the low standard deviations shown in the results indicate good reliability with the use of FBG sensors. SIGNIFICANCE: This study demonstrates how optical fiber technology can provide simple and reliable methods of measuring the critical physical properties of dental composites. In addition due to the embedding and preservation of the sensor within the samples multiple parameters can be tested for with the same sample. These features are expected to greatly assist material science researchers in dentistry as well as other biomedical fields. Of some interest the phenomenon of stress relaxation of dental composite at higher temperature was observed.


Assuntos
Resinas Compostas , Fibras Ópticas , Materiais Dentários , Vidro , Teste de Materiais , Polimerização , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA