Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Clin Chem ; 65(2): 263-271, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30459167

RESUMO

BACKGROUND: Extreme PCR in <30 s and high-speed melting of PCR products in <5 s are recent advances in the turnaround time of DNA analysis. Previously, these steps had been performed on different specialized instruments. Integration of both extreme PCR and high-speed melting with real-time fluorescence monitoring for detection and genotyping is presented here. METHODS: A microfluidic platform was enhanced for speed using cycle times as fast as 1.05 s between 66.4 °C and 93.7 °C, with end point melting rates of 8 °C/s. Primer and polymerase concentrations were increased to allow short cycle times. Synthetic sequences were used to amplify fragments of hepatitis B virus (70 bp) and Clostridium difficile (83 bp) by real-time PCR and high-speed melting on the same instrument. A blinded genotyping study of 30 human genomic samples at F2 c.*97, F5 c.1601, MTHFR c.665, and MTHFR c.1286 was also performed. RESULTS: Standard rapid-cycle PCR chemistry did not produce any product when total cycling times were reduced to <1 min. However, efficient amplification was possible with increased primer (5 µmol/L) and polymerase (0.45 U/µL) concentrations. Infectious targets were amplified and identified in 52 to 71 s. Real-time PCR and genotyping of single-nucleotide variants from human DNA was achieved in 75 to 87 s and was 100% concordant to known genotypes. CONCLUSIONS: Extreme PCR with high-speed melting can be performed in about 1 min. The integration of extreme PCR and high-speed melting shows that future molecular assays at the point of care for identification, quantification, and variant typing are feasible.


Assuntos
DNA Bacteriano/análise , DNA Viral/análise , Reação em Cadeia da Polimerase em Tempo Real/métodos , Clostridioides difficile/genética , Variações do Número de Cópias de DNA , DNA Bacteriano/metabolismo , DNA Viral/metabolismo , Genótipo , Vírus da Hepatite B/genética , Humanos , Microfluídica , Transição de Fase , Fatores de Tempo , Temperatura de Transição
2.
Clin Chem ; 63(10): 1624-1632, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28818830

RESUMO

BACKGROUND: High-resolution DNA melting analysis of small amplicons is a simple and inexpensive technique for genotyping. Microfluidics allows precise and rapid control of temperature during melting. METHODS: Using a microfluidic platform for serial PCR and melting analysis, 4 targets containing single nucleotide variants were amplified and then melted at different rates over a 250-fold range from 0.13 to 32 °C/s. Genotypes (n = 1728) were determined manually by visual inspection after background removal, normalization, and conversion to negative derivative plots. Differences between genotypes were quantified by a genotype discrimination ratio on the basis of inter- and intragenotype differences using the absolute value of the maximum vertical difference between curves as a metric. RESULTS: Different homozygous curves were genotyped by melting temperature and heterozygous curves were identified by shape. Technical artifacts preventing analysis (0.3%), incorrect (0.06%), and indeterminate (0.4%) results were minimal, occurring mostly at slow melting rates (0.13-0.5 °C/s). Genotype discrimination was maximal at around 8 °C/s (2-8 °C/s for homozygotes and 8-16 °C/s for heterozygotes), and no genotyping errors were made at rates >0.5 °C/s. PCR was completed in 10-12.2 min, followed by melting curve acquisition in 4 min down to <1 s. CONCLUSIONS: Microfluidics enables genotyping by melting analysis at rates up to 32 °C/s, requiring <1 s to acquire an entire melting curve. High-speed melting reduces the time for melting analysis, decreases errors, and improves genotype discrimination of small amplicons. Combined with extreme PCR, high-speed melting promises nucleic acid amplification and genotyping in < 1 min.


Assuntos
DNA/genética , Técnicas de Genotipagem/métodos , Técnicas Analíticas Microfluídicas/métodos , Desnaturação de Ácido Nucleico , Reação em Cadeia da Polimerase/métodos , Polimorfismo de Nucleotídeo Único , Desenho de Equipamento , Genótipo , Técnicas de Genotipagem/economia , Técnicas de Genotipagem/instrumentação , Heterozigoto , Homozigoto , Humanos , Técnicas Analíticas Microfluídicas/economia , Técnicas Analíticas Microfluídicas/instrumentação , Reação em Cadeia da Polimerase/economia , Reação em Cadeia da Polimerase/instrumentação , Fatores de Tempo
3.
Clin Chem ; 60(10): 1306-13, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25117377

RESUMO

BACKGROUND: Clinical molecular testing typically batches samples to minimize costs or uses multiplex lab-on-a-chip disposables to analyze a few targets. In genetics, multiple variants need to be analyzed, and different work flows that rapidly analyze multiple loci in a few targets are attractive. METHODS: We used a microfluidic platform tailored to rapid serial PCR and high-speed melting (HSM) to genotype 4 single nucleotide variants. A contiguous stream of master mix with sample DNA was pulsed with each primer pair for serial PCR and melting. Two study sites each analyzed 100 samples for F2 (c.*97G>A), F5 (c.1601G>A), and MTHFR (c.665C>T and c.1286A>C) after blinding for genotype and genotype proportions. Internal temperature controls improved melting curve precision. The platform's liquid-handling system automated PCR and HSM. RESULTS: PCR and HSM were completed in a total of 12.5 min. Melting was performed at 0.5 °C/s. As expected, homozygous variants were separated by melting temperature, and heterozygotes were identified by curve shape. All samples were correctly genotyped by the instrument. Follow-up testing was required on 1.38% of the assays for a definitive genotype. CONCLUSIONS: We demonstrate genotyping accuracy on a novel microfluidic platform with rapid serial PCR and HSM. The platform targets short turnaround times for multiple genetic variants in up to 8 samples. It is also designed to allow automatic and immediate reflexive or repeat testing depending on results from the streaming DNA. Rapid serial PCR provides a flexible genetic work flow and is nicely matched to HSM analysis.


Assuntos
Técnicas de Genotipagem/métodos , Técnicas Analíticas Microfluídicas/métodos , Reação em Cadeia da Polimerase/métodos , DNA/genética , Desenho de Equipamento , Fator V/genética , Genótipo , Técnicas de Genotipagem/instrumentação , Heterozigoto , Homozigoto , Humanos , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Técnicas Analíticas Microfluídicas/instrumentação , Reação em Cadeia da Polimerase/instrumentação , Polimorfismo de Nucleotídeo Único , Temperatura de Transição
4.
Neuron ; 110(19): 3106-3120.e7, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-35961320

RESUMO

Breakdown of the blood-central nervous system barrier (BCNSB) is a hallmark of many neuroinflammatory disorders, such as multiple sclerosis (MS). Using a mouse model of MS, experimental autoimmune encephalomyelitis (EAE), we show that endothelial-to-mesenchymal transition (EndoMT) occurs in the CNS before the onset of clinical symptoms and plays a major role in the breakdown of BCNSB function. EndoMT can be induced by an IL-1ß-stimulated signaling pathway in which activation of the small GTPase ADP ribosylation factor 6 (ARF6) leads to crosstalk with the activin receptor-like kinase (ALK)-SMAD1/5 pathway. Inhibiting the activation of ARF6 both prevents and reverses EndoMT, stabilizes BCNSB function, reduces demyelination, and attenuates symptoms even after the establishment of severe EAE, without immunocompromising the host. Pan-inhibition of ALKs also reduces disease severity in the EAE model. Therefore, multiple components of the IL-1ß-ARF6-ALK-SMAD1/5 pathway could be targeted for the treatment of a variety of neuroinflammatory disorders.


Assuntos
Encefalomielite Autoimune Experimental , Proteínas Monoméricas de Ligação ao GTP , Esclerose Múltipla , Receptores de Ativinas/metabolismo , Animais , Sistema Nervoso Central/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Doenças Neuroinflamatórias , Receptores Proteína Tirosina Quinases/metabolismo , Transdução de Sinais
5.
Pediatr Infect Dis J ; 28(6): 529-33, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19483518

RESUMO

Chronic granulomatous disease (CGD) is a rare inherited immunodeficiency disorder. The clinical presentation is varied depending on the degree of involvement of the NADPH oxidase system responsible for the oxidative burst of neutrophils. We present 3 cases of variant X-linked CGD in an effort to introduce the disease and highlight the importance and limitations of CGD screening. The variant X-linked form of CGD results in a less severe phenotype and frequently presents later in life. Variant X-linked CGD is difficult to diagnose, but is becoming more readily recognized based on improved testing methods. A high index of suspicion in the setting of unusual infections such as Burkholderia cepacia pneumonia is essential to make the diagnosis. Family screening can lead to early intervention, prophylaxis, and appropriate genetic counseling.


Assuntos
Doença Granulomatosa Crônica , Adolescente , Adulto , Líquido da Lavagem Broncoalveolar/microbiologia , Infecções por Burkholderia/microbiologia , Burkholderia cepacia/isolamento & purificação , Criança , Pré-Escolar , Família , Feminino , Triagem de Portadores Genéticos , Variação Genética , Doença Granulomatosa Crônica/diagnóstico , Doença Granulomatosa Crônica/genética , Humanos , Masculino , Glicoproteínas de Membrana/genética , NADPH Oxidase 2 , NADPH Oxidases/genética , Neutrófilos/metabolismo , Linhagem , Rodaminas/metabolismo
6.
Methods Mol Biol ; 336: 19-32, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16916250

RESUMO

Monitoring polymerase chain reaction (PCR) once each cycle is a powerful method to detect and quantify the presence of nucleic acid sequences and has become known as "real-time" PCR. Absolute quantification of initial template copy number can be obtained, although quantification relative to a control sample or second sequence is often adequate. Melting analysis following PCR monitors duplex hybridization as the temperature is changed and is a simple method for sequence verification and genotyping. Melting analysis is often conveniently performed immediately after PCR in the same reaction tube. The fluorescence of either DNA dyes that are specific to double-strands or fluorescently labeled oligonucleotide probes can be monitored for both real-time quantification and melting analysis. When used together with rapid temperature control, these methods allow amplification and genotyping in less than a half hour.


Assuntos
Biologia Molecular/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , DNA/química , Primers do DNA/química , Genótipo , Microscopia de Fluorescência , Hibridização de Ácido Nucleico , Temperatura , Fatores de Tempo
7.
J Mol Diagn ; 12(2): 213-9, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20093388

RESUMO

With the recent discovery of mutations in the STAT3 gene in the majority of patients with classic Hyper-IgE syndrome, it is now possible to make a molecular diagnosis in most of these cases. We have developed a PCR-based high-resolution DNA-melting assay to scan selected exons of the STAT3 gene for mutations responsible for Hyper-IgE syndrome, which is then followed by targeted sequencing. We scanned for mutations in 10 unrelated pedigrees, which include 16 patients with classic Hyper-IgE syndrome. These pedigrees include both sporadic and familial cases and their relatives, and we have found STAT3 mutations in all affected individuals. High-resolution melting analysis allows a single day turn-around time for mutation scanning and targeted sequencing of the STAT3 gene, which will greatly facilitate the rapid diagnosis of the Hyper-IgE syndrome, allowing prompt and appropriate therapy, prophylaxis, improved clinical outcome, and accurate genetic counseling.


Assuntos
Análise Mutacional de DNA/métodos , Síndrome de Job , Fator de Transcrição STAT3/genética , Éxons , Feminino , Humanos , Síndrome de Job/genética , Síndrome de Job/imunologia , Síndrome de Job/fisiopatologia , Masculino , Dados de Sequência Molecular , Mutação , Linhagem , Análise de Sequência de DNA/métodos
8.
J Mol Diagn ; 12(3): 368-76, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20228266

RESUMO

High-resolution melting analysis was applied to X-linked chronic granulomatous disease, a rare disorder resulting from mutations in CYBB. Melting curves of the 13 PCR products bracketing CYBB exons were predicted by Poland's algorithm and compared with observed curves from 96 normal individuals. Primer plates were prepared robotically in batches and dried, greatly simplifying the 3- to 6-hour workflow that included DNA isolation, PCR, melting, and cycle sequencing of any positive products. Small point mutations or insertions/deletions were detected by mixing the hemizygous male DNA with normal male DNA to produce artificial heterozygotes, whereas detection of gross deletions was performed on unmixed samples. Eighteen validation samples and 22 clinical kindreds were analyzed for CYBB mutations. All blinded validation samples were correctly identified. The clinical probands were identified after screening for neutrophil oxidase activity. Nineteen different mutations were found, including seven near intron-exon boundaries predicting splicing defects, five substitutions within exons, three small deletions predicting premature termination, and four gross deletions of multiple exons. Ten novel mutations were found, including (c.) two missense (730T>A, 134T>G), one nonsense (90C>A), four splice site defects (45 + 1G>T, 674 + 4A>G, 1461 + 2delT, and 1462-2A>C), two small deletions (636delT, 1661_1662delCT), and one gross deletion of exons 6 to 8. High-resolution melting can provide timely diagnosis at low cost for effective clinical management of rare, genetic primary immunodeficiency disorders.


Assuntos
Genes Ligados ao Cromossomo X/genética , Doença Granulomatosa Crônica/genética , Reação em Cadeia da Polimerase/métodos , Feminino , Humanos , Masculino , Glicoproteínas de Membrana/genética , NADPH Oxidase 2 , NADPH Oxidases/genética , Análise de Sequência de DNA
9.
Biomed Microdevices ; 9(2): 159-66, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17165128

RESUMO

Solution-phase, DNA melting analysis for heterozygote scanning and single nucleotide polymorphism (SNP) genotyping was performed in 10 nl volumes on a custom microchip. Human genomic DNA was PCR amplified in the presence of the saturating fluorescent dye, LCGreen Plus, and placed within microfluidic channels that were created between two glass slides. The microchip was heated at 0.1 degrees C/s with a Peltier device and viewed with an inverted fluorescence microscope modified for photomulitiplier tube detection. The melting data was normalized and the negative first derivative plotted against temperature. Mutation scanning for heterozygotes was easily performed by comparing the shape of the melting curve to homozygous standards. Genotyping of homozygotes by melting temperature (T(m)) required absolute temperature comparisons. Mutation scanning of ATM exon 17 and CFTR exon 10 identified single base change heterozygotes in 84 and 201 base-pair (bp) products, respectively. All genotypes at HFE C282Y were distinguished by simple melting analysis of a 40-bp fragment. Sequential analysis of the same sample on the gold-standard, commercial high-resolution melting instrument HR-1, followed by melting in a 10 nl reaction chamber, produced similar results. DNA melting analysis requires only minutes after PCR and is a simple method for genotyping and scanning that can be reduced to nanoliter volumes. Microscale systems for performing DNA melting reduce the reagents/DNA template required with a promise for high throughput analysis in a closed chamber without risk of contamination.


Assuntos
Análise Mutacional de DNA/instrumentação , DNA/química , DNA/genética , Hibridização in Situ Fluorescente/instrumentação , Técnicas Analíticas Microfluídicas/instrumentação , Análise de Sequência com Séries de Oligonucleotídeos/instrumentação , Polimorfismo de Nucleotídeo Único/genética , Análise Mutacional de DNA/métodos , Desenho de Equipamento , Análise de Falha de Equipamento , Hibridização in Situ Fluorescente/métodos , Técnicas Analíticas Microfluídicas/métodos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Transição de Fase , Soluções , Temperatura de Transição
10.
Clin Chem ; 49(3): 396-406, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12600951

RESUMO

BACKGROUND: Common methods for identification of DNA sequence variants use gel electrophoresis or column separation after PCR. METHODS: We developed a method for sequence variant analysis requiring only PCR and amplicon melting analysis. One of the PCR primers was fluorescently labeled. After PCR, the melting transition of the amplicon was monitored by high-resolution melting analysis. Different homozygotes were distinguished by amplicon melting temperature (T(m)). Heterozygotes were identified by low-temperature melting of heteroduplexes, which broadened the overall melting transition. In both cases, melting analysis required approximately 1 min and no sample processing was needed after PCR. RESULTS: Polymorphisms in the HTR2A (T102C), beta-globin [hemoglobin (Hb) S, C, and E], and cystic fibrosis (F508del, F508C, I507del, I506V) genes were analyzed. Heteroduplexes produced by amplification of heterozygous DNA were best detected by rapid cooling (>2 degrees C/s) of denatured products, followed by rapid heating during melting analysis (0.2-0.4 degrees C/s). Heterozygotes were distinguished from homozygotes by a broader melting transition, and each heterozygote had a uniquely shaped fluorescent melting curve. All homozygotes tested were distinguished from each other, including Hb AA and Hb SS, which differed in T(m) by <0.2 degrees C. The amplicons varied in length from 44 to 304 bp. In place of one labeled and one unlabeled primer, a generic fluorescent oligonucleotide could be used if a 5' tail of identical sequence was added to one of the two unlabeled primers. CONCLUSION: High-resolution melting analysis of PCR products amplified with labeled primers can identify both heterozygous and homozygous sequence variants.


Assuntos
DNA/genética , Corantes Fluorescentes , Sondas de Oligonucleotídeos , Compostos Orgânicos , Sequência de Bases , Benzotiazóis , Proteínas Sanguíneas/genética , Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística , Diaminas , Genótipo , Globinas/genética , Análise Heteroduplex , Heterozigoto , Serina Peptidase 2 de Requerimento de Alta Temperatura A , Homozigoto , Humanos , Proteínas Mitocondriais , Reação em Cadeia da Polimerase/métodos , Polimorfismo Genético , Quinolinas , Serina Endopeptidases/genética , Temperatura
11.
Clin Chem ; 49(6 Pt 1): 853-60, 2003 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12765979

RESUMO

BACKGROUND: High-resolution amplicon melting analysis was recently introduced as a closed-tube method for genotyping and mutation scanning (Gundry et al. Clin Chem 2003;49:396-406). The technique required a fluorescently labeled primer and was limited to the detection of mutations residing in the melting domain of the labeled primer. Our aim was to develop a closed-tube system for genotyping and mutation scanning that did not require labeled oligonucleotides. METHODS: We studied polymorphisms in the hydroxytryptamine receptor 2A (HTR2A) gene (T102C), beta-globin (hemoglobins S and C) gene, and cystic fibrosis (F508del, F508C, I507del) gene. PCR was performed in the presence of the double-stranded DNA dye LCGreen, and high-resolution amplicon melting curves were obtained. After fluorescence normalization, temperature adjustment, and/or difference analysis, sequence alterations were distinguished by curve shape and/or position. Heterozygous DNA was identified by the low-temperature melting of heteroduplexes not observed with other dyes commonly used in real-time PCR. RESULTS: The six common beta-globin genotypes (AA, AS, AC, SS, CC, and SC) were all distinguished in a 110-bp amplicon. The HTR2A single-nucleotide polymorphism was genotyped in a 544-bp fragment that split into two melting domains. Because melting curve acquisition required only 1-2 min, amplification and analysis were achieved in 10-20 min with rapid cycling conditions. CONCLUSIONS: High-resolution melting analysis of PCR products amplified in the presence of LCGreen can identify both heterozygous and homozygous sequence variants. The technique requires only the usual unlabeled primers and a generic double-stranded DNA dye added before PCR for amplicon genotyping, and is a promising method for mutation screening.


Assuntos
Análise Mutacional de DNA/métodos , Corantes Fluorescentes , Compostos Orgânicos , Benzotiazóis , Proteínas Sanguíneas/genética , Regulador de Condutância Transmembrana em Fibrose Cística , Diaminas , Genótipo , Hemoglobina C/genética , Hemoglobina Falciforme/genética , Análise Heteroduplex , Humanos , Reação em Cadeia da Polimerase , Polimorfismo de Nucleotídeo Único , Quinolinas , Receptor 5-HT2A de Serotonina , Receptores de Serotonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA