Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Environ ; 41(11): 2600-2616, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29869794

RESUMO

Potato is an important staple food with increasing popularity worldwide. Elevated temperatures significantly impair tuber yield and quality. Breeding heat-tolerant cultivars is therefore an urgent need to ensure sustainable potato production in the future. An integrated approach combining physiology, biochemistry, and molecular biology was undertaken to contribute to a better understanding of heat effects on source- (leaves) and sink-organs (tubers) in a heat-susceptible cultivar. An experimental set-up was designed allowing tissue-specific heat application. Elevated day and night (29°C/27°C) temperatures impaired photosynthesis and assimilate production. Biomass allocation shifted away from tubers towards leaves indicating reduced sink strength of developing tubers. Reduced sink strength of tubers was paralleled by decreased sucrose synthase activity and expression under elevated temperatures. Heat-mediated inhibition of tuber growth coincided with a decreased expression of the phloem-mobile tuberization signal SP6A in leaves. SP6A expression and photosynthesis were also affected, when only the belowground space was heated, and leaves were kept under control conditions. By contrast, the negative effects on tuber metabolism were attenuated, when only the shoot was subjected to elevated temperatures. This, together with transcriptional changes discussed, indicated a bidirectional communication between leaves and tubers to adjust the source capacity and/or sink strength to environmental conditions.


Assuntos
Folhas de Planta/fisiologia , Tubérculos/fisiologia , Solanum tuberosum/fisiologia , Biomassa , Temperatura Alta , Fotossíntese , Tubérculos/crescimento & desenvolvimento , Tubérculos/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Solanum tuberosum/crescimento & desenvolvimento , Solanum tuberosum/metabolismo , Amido/metabolismo , Açúcares/metabolismo , Transcriptoma
2.
J Exp Bot ; 68(7): 1697-1713, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338908

RESUMO

Barley (Hordeum vulgare L.) is among the most stress-tolerant crops; however, not much is known about the genetic and environmental control of metabolic adaptation of barley to abiotic stresses. We have subjected a genetically diverse set of 81 barley accessions, consisting of Mediterranean landrace genotypes and German elite breeding lines, to drought and combined heat and drought stress at anthesis. Our aim was to (i) investigate potential differences in morphological, physiological, and metabolic adaptation to the two stress scenarios between the Mediterranean and German barley genotypes and (ii) identify metabolic quantitative trait loci (mQTLs). To this end, we have genotyped the investigated barley lines with an Illumina iSelect 9K array and analyzed a set of 57 metabolites from the primary C and N as well as antioxidant metabolism in flag leaves under control and stress conditions. We found that drought-adapted genotypes attenuate leaf carbon metabolism much more strongly than elite lines during drought stress adaptation. Furthermore, we identified mQTLs for flag leaf γ-tocopherol, glutathione, and succinate content by association genetics that co-localize with genes encoding enzymes of the pathways producing these antioxidant metabolites. Our results provide the molecular basis for breeding barley cultivars with improved abiotic stress tolerance.


Assuntos
Secas , Hordeum/anatomia & histologia , Hordeum/fisiologia , Temperatura Alta/efeitos adversos , Locos de Características Quantitativas , Adaptação Fisiológica , Hordeum/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA