Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Nat Genet ; 10(1): 89-93, 1995 May.
Artigo em Inglês | MEDLINE | ID: mdl-7647799

RESUMO

A heterogeneous group of neurological disorders known as the spinocerebellar ataxias (SCA) are characterized by degeneration of the cerebellum, spinal cord and brainstem. We describe linkage analysis in four unusual SCA families revealing a distinct disease locus on chromosome 3p14-21.1. The disease in these families is distinguished from other forms of SCA by concomitant retinal degeneration. Initial visual problems leading to blindness, disabling ataxia and anticipation are seen in all kindreds. The anticipation in these families suggests a dynamic mutation at this locus. Eventual molecular characterization of this disease may provide valuable insights into the processes of both neural and retinal degeneration.


Assuntos
Cromossomos Humanos Par 3 , Degeneração Retiniana/genética , Degenerações Espinocerebelares/genética , Adolescente , Adulto , Idade de Início , Alelos , População Negra/genética , Criança , Pré-Escolar , Defeitos da Visão Cromática/complicações , Feminino , Ligação Genética , Marcadores Genéticos , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Linhagem , Degeneração Retiniana/complicações , Degeneração Retiniana/diagnóstico , População Branca/genética
2.
Nat Med ; 5(9): 1062-5, 1999 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-10470086

RESUMO

Biological circadian clocks oscillate with an approximately 24-hour period, are ubiquitous, and presumably confer a selective advantage by anticipating the transitions between day and night. The circadian rhythms of sleep, melatonin secretion and body core temperature are thought to be generated by the suprachiasmatic nucleus of the hypothalamus, the anatomic locus of the mammalian circadian clock. Autosomal semi-dominant mutations in rodents with fast or slow biological clocks (that is, short or long endogenous period lengths; tau) are associated with phase-advanced or delayed sleep-wake rhythms, respectively. These models predict the existence of familial human circadian rhythm variants but none of the human circadian rhythm disorders are known to have a familial tendency. Although a slight 'morning lark' tendency is common, individuals with a large and disabling sleep phase-advance are rare. This disorder, advanced sleep-phase syndrome, is characterized by very early sleep onset and offset; only two cases are reported in young adults. Here we describe three kindreds with a profound phase advance of the sleep-wake, melatonin and temperature rhythms associated with a very short tau. The trait segregates as an autosomal dominant with high penetrance. These kindreds represent a well-characterized familial circadian rhythm variant in humans and provide a unique opportunity for genetic analysis of human circadian physiology.


Assuntos
Ritmo Circadiano/genética , Variação Genética/genética , Transtornos do Sono-Vigília/genética , Ciclos de Atividade , Adulto , Idoso , Criança , Europa (Continente) , Saúde da Família , Feminino , Genes Dominantes/genética , Humanos , Masculino , Análise por Pareamento , Melatonina/análise , Pessoa de Meia-Idade , Linhagem , Penetrância , Polissonografia , Sono/genética , Fases do Sono , Temperatura , Fatores de Tempo
3.
Cephalalgia ; 30(2): 170-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19489890

RESUMO

The association between the clinical use of nitroglycerin (NTG) and headache has led to the examination of NTG as a model trigger for migraine and related headache disorders, both in humans and laboratory animals. In this study in mice, we hypothesized that NTG could trigger behavioural and physiological responses that resemble a common manifestation of migraine in humans. We report that animals exhibit a dose-dependent and prolonged NTG-induced thermal and mechanical allodynia, starting 30-60 min after intraperitoneal injection of NTG at 5-10 mg/kg. NTG administration also induced Fos expression, an anatomical marker of neuronal activity in neurons of the trigeminal nucleus caudalis and cervical spinal cord dorsal horn, suggesting that enhanced nociceptive processing within the spinal cord contributes to the increased nociceptive behaviour. Moreover, sumatriptan, a drug with relative specificity for migraine, alleviated the NTG-induced allodynia. We also tested whether NTG reduces the threshold for cortical spreading depression (CSD), an event considered to be the physiological substrate of the migraine aura. We found that the threshold of CSD was unaffected by NTG, suggesting that NTG stimulates migraine mechanisms that are independent of the regulation of cortical excitability.


Assuntos
Hiperalgesia/tratamento farmacológico , Nitroglicerina/toxicidade , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Sumatriptana/farmacologia , Vasodilatadores/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Temperatura Alta , Hiperalgesia/induzido quimicamente , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estimulação Física , Proteínas Proto-Oncogênicas c-fos/biossíntese , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo
4.
Science ; 291(5506): 1040-3, 2001 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-11232563

RESUMO

Familial advanced sleep phase syndrome (FASPS) is an autosomal dominant circadian rhythm variant; affected individuals are "morning larks" with a 4-hour advance of the sleep, temperature, and melatonin rhythms. Here we report localization of the FASPS gene near the telomere of chromosome 2q. A strong candidate gene (hPer2), a human homolog of the period gene in Drosophila, maps to the same locus. Affected individuals have a serine to glycine mutation within the casein kinase Iepsilon (CKIepsilon) binding region of hPER2, which causes hypophosphorylation by CKIepsilon in vitro. Thus, a variant in human sleep behavior can be attributed to a missense mutation in a clock component, hPER2, which alters the circadian period.


Assuntos
Relógios Biológicos/genética , Ritmo Circadiano/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas/genética , Proteínas/metabolismo , Transtornos do Sono do Ritmo Circadiano/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Caseína Quinases , Mapeamento Cromossômico , Cromossomos Humanos Par 2/genética , Éxons , Feminino , Ligação Genética , Glicina , Humanos , Masculino , Dados de Sequência Molecular , Mutação de Sentido Incorreto , Proteínas Nucleares/química , Linhagem , Proteínas Circadianas Period , Fosforilação , Polimorfismo Conformacional de Fita Simples , Proteínas Quinases/metabolismo , Proteínas/química , Serina , Transtornos do Sono do Ritmo Circadiano/fisiopatologia , Fatores de Transcrição
5.
Neuron ; 10(4): 667-78, 1993 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-8386527

RESUMO

Hyperkalemic periodic paralysis (HYPP), one of several inheritable myotonic diseases, results from genetic defects in the human skeletal muscle Na+ channel. In some pedigrees, HYPP is correlated with a single base pair substitution resulting in a Met replacing Thr704 in the fifth transmembrane segment of the second domain. This region is totally conserved between the human and rat channels. We have introduced the human mutation into the corresponding region of the rat muscle Na+ channel cDNA and expressed it in human embryonic kidney 293 cells. Patch-clamp recordings show that this mutation shifts the voltage dependence of activation by 10-15 mV in the negative direction. The shift results in a persistent Na+ current that activates near -70 mV; this phenomenon could underlie the abnormal muscle activity observed in patients with HYPP.


Assuntos
Hiperpotassemia/genética , Mutação , Paralisia/genética , Periodicidade , Canais de Sódio/genética , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular Transformada , Eletrofisiologia , Espaço Extracelular/metabolismo , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Cinética , Dados de Sequência Molecular , Sondas de Oligonucleotídeos/genética , Potássio/metabolismo , Canais de Sódio/fisiologia
6.
Neuron ; 8(5): 891-7, 1992 May.
Artigo em Inglês | MEDLINE | ID: mdl-1316765

RESUMO

The periodic paralyses are a group of autosomal dominant muscle diseases sharing a common feature of episodic paralysis. In one form, paramyotonia congenita (PC), the paralysis usually occurs with muscle cooling. Electrophysiologic studies of muscle from PC patients have revealed temperature-dependent alterations in sodium channel (NaCh) function. This observation led to demonstration of genetic linkage of a skeletal muscle NaCh gene to a PC disease allele. We now report the use of the single-strand conformation polymorphism technique to define alleles specific to PC patients from three families. Sequencing of these alleles defined base pair changes within the same codon, which resulted in two distinct amino acid substitutions for a highly conserved arginine residue in the S4 helix of domain 4 in the adult skeletal muscle NaCh. These data establish the chromosome 17q NaCh locus as the PC gene and represent two mutations causing the distinctive, temperature-sensitive PC phenotype.


Assuntos
Músculos/fisiopatologia , Mutação , Miotonia Congênita/genética , Canais de Sódio/genética , Alelos , Sequência de Aminoácidos , Sequência de Bases , Códon , DNA/química , DNA/genética , Éxons , Humanos , Íntrons , Dados de Sequência Molecular , Miotonia Congênita/fisiopatologia , Conformação de Ácido Nucleico , Polimorfismo Genético
7.
Neuron ; 31(4): 537-44, 2001 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-11545713

RESUMO

Frings mice are a model of generalized epilepsy and have seizures in response to loud noises. This phenotype is due to the autosomal recessive inheritance of a single gene on mouse chromosome 13. Here we report the fine genetic and physical mapping of the locus. Sequencing of the region led to identification of a novel gene; mutant mice are homozygous for a single base pair deletion that leads to premature termination of the encoded protein. Interestingly, the mRNA levels of this gene in various tissues are so low that the cDNA has eluded detection by standard library screening approaches. Study of the MASS1 protein will lead to new insights into regulation of neuronal excitability and a new pathway through which dysfunction can lead to epilepsy.


Assuntos
Epilepsia Reflexa/genética , Proteínas de Membrana/genética , Camundongos Mutantes Neurológicos/genética , Proteínas do Tecido Nervoso/genética , Receptores Acoplados a Proteínas G , Sequência de Aminoácidos , Animais , Mapeamento Cromossômico , Clonagem Molecular , DNA Complementar , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular
8.
Neuron ; 31(6): 913-27, 2001 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-11580893

RESUMO

Spinocerebellar ataxia type 7 (SCA7) is an autosomal dominant disorder caused by a CAG repeat expansion. To determine the mechanism of neurotoxicity, we produced transgenic mice and observed a cone-rod dystrophy. Nuclear inclusions were present, suggesting that the disease pathway involves the nucleus. When yeast two-hybrid assays indicated that cone-rod homeobox protein (CRX) interacts with ataxin-7, we performed further studies to assess this interaction. We found that ataxin-7 and CRX colocalize and coimmunoprecipitate. We observed that polyglutamine-expanded ataxin-7 can dramatically suppress CRX transactivation. In SCA7 transgenic mice, electrophoretic mobility shift assays indicated reduced CRX binding activity, while RT-PCR analysis detected reductions in CRX-regulated genes. Our results suggest that CRX transcription interference accounts for the retinal degeneration in SCA7 and thus may provide an explanation for how cell-type specificity is achieved in this polyglutamine repeat disease.


Assuntos
Núcleo Celular/metabolismo , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas do Tecido Nervoso/fisiologia , Proteínas Nucleares/fisiologia , Peptídeos/química , Transativadores/antagonistas & inibidores , Repetições de Trinucleotídeos , Fatores Etários , Animais , Ataxina-7 , Linhagem Celular , Núcleo Celular/ultraestrutura , Modelos Animais de Doenças , Eletrorretinografia , Proteínas do Olho/química , Proteínas do Olho/genética , Proteínas do Olho/fisiologia , Perfilação da Expressão Gênica , Genes Sintéticos , Proteínas de Homeodomínio/fisiologia , Humanos , Substâncias Macromoleculares , Camundongos , Camundongos Transgênicos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/química , Proteínas Nucleares/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Príons/genética , Regiões Promotoras Genéticas , Ligação Proteica , Degeneração Retiniana/genética , Degeneração Retiniana/metabolismo , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Transmissão Sináptica , Transativadores/fisiologia , Ativação Transcricional , Transfecção , Transgenes , Técnicas do Sistema de Duplo-Híbrido
9.
J Clin Invest ; 106(3): 431-8, 2000 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10930446

RESUMO

Hyperkalemic periodic paralysis (HyperKPP) is an autosomal dominant skeletal muscle disorder caused by single mutations in the SCN4A gene, encoding the human skeletal muscle voltage-gated Na(+) channel. We have now identified one allele with two novel mutations occurring simultaneously in the SCN4A gene. These mutations are found in two distinct families that had symptoms of periodic paralysis and malignant hyperthermia susceptibility. The two nucleotide transitions predict phenylalanine 1490-->leucine and methionine 1493-->isoleucine changes located in the transmembrane segment S5 in the fourth repeat of the alpha-subunit Na(+) channel. Surprisingly, this mutation did not affect fast inactivation parameters. The only defect produced by the double mutant (F1490L-M1493I, expressed in human embryonic kidney 293 cells) is an enhancement of slow inactivation, a unique behavior not seen in the 24 other disease-causing mutations. The behavior observed in these mutant channels demonstrates that manifestation of HyperKPP does not necessarily require disruption of slow inactivation. Our findings may also shed light on the molecular determinants and mechanism of Na(+) channel slow inactivation and help clarify the relationship between Na(+) channel defects and the long-term paralytic attacks experienced by patients with HyperKPP.


Assuntos
Paralisias Periódicas Familiares/genética , Paralisias Periódicas Familiares/metabolismo , Mutação Puntual , Canais de Sódio/genética , Adulto , Alelos , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Primers do DNA/genética , Feminino , Humanos , Ativação do Canal Iônico , Cinética , Masculino , Hipertermia Maligna/genética , Hipertermia Maligna/metabolismo , Pessoa de Meia-Idade , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.4 , Bloqueadores dos Canais de Sódio , Canais de Sódio/química
10.
Brain ; 129(Pt 1): 8-17, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16195244

RESUMO

Periodic paralyses (PPs) are rare inherited channelopathies that manifest as abnormal, often potassium (K)-sensitive, muscle membrane excitability leading to episodic flaccid paralysis. Hypokalaemic (HypoPP) and hyperkalaemic PP and Andersen-Tawil syndrome are genetically heterogeneous. Over the past decade mutations in genes encoding three ion channels, CACN1AS, SCN4A and KCNJ2, have been identified and account for at least 70% of the identified cases of PP and several allelic disorders. No prospective clinical studies have followed sufficiently large cohorts with characterized molecular lesions to draw precise conclusions. We summarize current knowledge of the clinical diagnosis, molecular genetics, genotype-phenotype correlations, pathophysiology and treatment in the PPs. We focus on unresolved issues including (i) Are there additional ion channel defects in cases without defined mutations? (ii) What is the mechanism for depolarization-induced weakness in Hypo PP? and finally (iii) Will detailed electrophysiological studies be able to correctly identify specific channel mutations? Understanding the pathophysiology of the potassium-sensitive PPs ought to reduce genetic complexity, allow subjects to be stratified during future clinical trials and increase the likelihood of observing true clinical effects. Ideally, therapy for the PPs will prevent attacks, avoid permanent weakness and improve quality of life. Moreover, understanding the skeletal muscle channelopathies will hopefully lead to insights into the more common central nervous system channel diseases such as migraine and epilepsy.


Assuntos
Paralisias Periódicas Familiares , Animais , Inibidores da Anidrase Carbônica/uso terapêutico , Genótipo , Humanos , Ativação do Canal Iônico , Camundongos , Camundongos Knockout , Modelos Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Paralisias Periódicas Familiares/diagnóstico , Paralisias Periódicas Familiares/tratamento farmacológico , Paralisias Periódicas Familiares/genética , Fenótipo , Potássio/metabolismo , Potássio/uso terapêutico , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Sódio/genética , Canais de Sódio/metabolismo
11.
J Neurosci ; 19(12): 4762-71, 1999 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-10366610

RESUMO

Hyperkalaemic periodic paralysis, paramyotonia congenita, and potassium-aggravated myotonia are three autosomal dominant skeletal muscle disorders linked to the SCN4A gene encoding the alpha-subunit of the human voltage-sensitive sodium channel. To date, approximately 20 point mutations causing these disorders have been described. We have identified a new point mutation, in the SCN4A gene, in a family with a hyperkalaemic periodic paralysis phenotype. This mutation predicts an isoleucine-to-phenylalanine substitution at position 1495 located in the transmembrane segment S5 in the fourth homologous domain of the human alpha-subunit sodium channel. Introduction of the I1495F mutation into the wild-type channels disrupted the macroscopic current inactivation decay and shifted both steady-state activation and inactivation to the hyperpolarizing direction. The recovery from fast inactivation was slowed, and there was no effect on channel deactivation. Additionally, a significant enhancement of slow inactivation was observed in the I1495F mutation. In contrast, the T704M mutation, a hyperkalaemic periodic paralysis mutation located in the cytoplasmic interface of the S5 segment of the second domain, also shifted activation in the hyperpolarizing direction but had little effect on fast inactivation and dramatically impaired slow inactivation. These results, showing that the I1495F and T704M hyperkalaemic periodic paralysis mutations both have profound effects on channel activation and fast-slow inactivation, suggest that the S5 segment maybe in a location where fast and slow inactivation converge.


Assuntos
Hiperpotassemia/genética , Ativação do Canal Iônico/genética , Paralisias Periódicas Familiares/genética , Mutação Puntual , Canais de Sódio/genética , Células Cultivadas , Análise Mutacional de DNA , Primers do DNA , Expressão Gênica/fisiologia , Humanos , Hiperpotassemia/metabolismo , Rim/citologia , Cinética , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Canal de Sódio Disparado por Voltagem NAV1.4 , Paralisias Periódicas Familiares/metabolismo , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Canais de Sódio/química , Canais de Sódio/metabolismo , Transfecção
12.
Gene ; 273(1): 89-96, 2001 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-11483364

RESUMO

Several years ago, we initiated a long-term project of cloning new human ATP-binding cassette (ABC) transporters and linking them to various disease phenotypes. As one of the results of this project, we present two new members of the human ABCC subfamily, ABCC11 and ABCC12. These two new human ABC transporters were fully characterized and mapped to the human chromosome 16q12. With the addition of these two genes, the complete human ABCC subfamily has 12 identified members (ABCC1-12), nine from the multidrug resistance-like subgroup, two from the sulfonylurea receptor subgroup, and the CFTR gene. Phylogenetic analysis determined that ABCC11 and ABCC12 are derived by duplication, and are most closely related to the ABCC5 gene. Genetic variation in some ABCC subfamily members is associated with human inherited diseases, including cystic fibrosis (CFTR/ABCC7), Dubin-Johnson syndrome (ABCC2), pseudoxanthoma elasticum (ABCC6) and familial persistent hyperinsulinemic hypoglycemia of infancy (ABCC8). Since ABCC11 and ABCC12 were mapped to a region harboring gene(s) for paroxysmal kinesigenic choreoathetosis, the two genes represent positional candidates for this disorder.


Assuntos
Transportadores de Cassetes de Ligação de ATP/genética , Cromossomos Humanos Par 16 , Sequência de Aminoácidos , Sequência de Bases , Linhagem Celular , Mapeamento Cromossômico , Clonagem Molecular , Humanos , Dados de Sequência Molecular , Proteína 2 Associada à Farmacorresistência Múltipla , Filogenia
13.
Neurology ; 54(4): 937-42, 2000 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-10690989

RESUMO

OBJECTIVE: To determine the functional consequences of missense mutations within the skeletal muscle chloride channel gene CLCN1 that cause myotonia congenita. BACKGROUND: Myotonia congenita is a genetic muscle disease associated with abnormalities in the skeletal muscle voltage-gated chloride (ClC-1) channel. In order to understand the molecular basis of this inherited disease, it is important to determine the physiologic consequences of mutations found in patients affected by it. METHODS: The authors used a mammalian cell (human embryonic kidney 293) expression system and the whole-cell voltage-clamp technique to functionally express and physiologically characterize five CLCN1 mutations. RESULTS: The I329T mutation shifted the voltage dependence of open probability of ClC-1 channels to the right by 192 mV, and the R338Q mutation shifted it to the right by 38 mV. In addition, the I329T ClC-1 channels deactivated to a lesser extent than normal at negative potentials. The V165G, F167L, and F413C ClC-1 channels also shifted the voltage dependence of open probability, but only by +14 to +20 mV. CONCLUSIONS: The functional consequences of these mutations form the physiologic argument that these are disease-causing mutations and could lead to myotonia congenita by impairing the ability of the skeletal muscle voltage-gated chloride channels to maintain normal muscle excitability. Understanding of genetic and physiologic defects may ultimately lead to better diagnosis and treatment of patients with myotonia congenita.


Assuntos
Canais de Cloreto/genética , Miotonia Congênita/etiologia , Miotonia Congênita/genética , Canais de Cloreto/fisiologia , Humanos , Mutação de Sentido Incorreto/genética , Miotonia Congênita/fisiopatologia
14.
Neurology ; 49(5): 1231-8, 1997 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-9371899

RESUMO

A single familial hemiplegic migraine locus has been previously mapped to 19p13.1 and associated with mutations in a calcium channel gene (CACNL1A4). We describe a new 39-member four-generation family from Wyoming of German-Native American descent with autosomal dominant familial hemiplegic migraine that is not linked to the chromosome 19p locus. Affected individuals showed a stereotypic pattern of migrainous headache associated with hemisensory and hemiparetic attacks, without other headache types. Eighty-three percent reported minor head trauma as a trigger for individual attacks. Seventy-two percent reported other typical migraine triggers for the attacks. Attack frequency decreased with age and the overall course was benign. Genetic linkage studies of this family found strong evidence for the disease gene in this family being located at chromosome 1q31. Multipoint analysis showed lod scores > 3 in a 44-cm region flanked by D1S158 and D1S2781, using 80% penetrance and a phenocopy rate of 1/50. Haplotype and multipoint analysis, including flanking markers, suggested incomplete penetrance and variable expressivity of the disease. A single affected patient who reports atypical symptoms including daily headaches likely represents a phenocopy. This new locus for hemiplegic migraine suggests that mutations of additional calcium channels in the region may cause the disease.


Assuntos
Cromossomos Humanos Par 1 , Hemiplegia/genética , Transtornos de Enxaqueca/genética , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Mapeamento Cromossômico , Saúde da Família , Feminino , Marcadores Genéticos , Humanos , Masculino , Pessoa de Meia-Idade , Linhagem , Fenótipo
15.
Neurology ; 44(8): 1441-7, 1994 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8058146

RESUMO

The autosomal dominant cerebellar ataxias (ADCA) comprise a heterogeneous group of neurologic disorders characterized by degeneration of the cerebellum, spinal cord, and brainstem. Genetic analysis has revealed two loci, SCA1 on chromosome 6p, and SCA2 on chromosome 12q, responsible for some ADCA. We present a four-generation kindred of 42 individuals, 12 of whom were clinically affected with ADCA and an associated cone dystrophy. Early loss of color discrimination with retinal and macular signs is followed by gradual progression of cerebellar dysfunction and development of pyramidal signs. Pathology shows degeneration of cerebellum, basis pontis, inferior olive, and retinal ganglion cells. For genetic analysis, we used polymorphic markers D6S89 and D12S79; linkage analysis gave negative results, excluding linkage to both SCA1 and SCA2. The data strongly support genetic heterogeneity consistent with the unique clinicopathologic features of the form of ADCA displayed in this large family.


Assuntos
Ataxia Cerebelar/genética , Ataxia Cerebelar/patologia , Degeneração Retiniana/genética , Adolescente , Adulto , Encéfalo/patologia , Ataxia Cerebelar/complicações , Feminino , Ligação Genética , Marcadores Genéticos , Humanos , Escore Lod , Masculino , Pessoa de Meia-Idade , Linhagem , Reação em Cadeia da Polimerase , Degeneração Retiniana/etiologia
16.
Neurology ; 58(8): 1266-72, 2002 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-11971097

RESUMO

BACKGROUND: Mutations in the human skeletal muscle sodium channels are associated with hyperKPP, hypoKPP, paramyotonia congenita, and potassium-aggravated myotonia. This article describes the clinical manifestations of a patient with hyperKPP carrying a mutation (L689I) occurring in the linker DIIS4-S5 and its functional expression in a mammalian system. OBJECTIVE: To correlate the clinical manifestations of hyperkalemic periodic paralysis (hyperKPP) with the functional expression of a sodium channel mutation. METHODS: The mutation was introduced into a mammalian expression vector and expressed in the human embryonic kidney 293 cells. The functional expression of the L689I and that of the wild-type channels was monitored using the whole cell voltage-clamp technique. RESULTS: There was no change in the kinetics of fast inactivation, and inactivation curves were indistinguishable from that of wild-type channels. However, the L689I mutation caused a hyperpolarizing shift in the voltage dependence of activation and the mutant channels showed an impaired slow inactivation process. In addition, the mutant channels have a larger persistent current at -40 mV where window current may occur. CONCLUSIONS: The L689I mutation has similar effects to the T704M mutation and causes hyperKPP in this family. Because both of these hyperKPP mutations cause episodic muscle weakness, and because patients harboring another mutation (I693T) also can have episodic weakness, it is hypothesized that mutations occurring in this region of the sodium channel may cause episodic weakness through an impaired slow inactivation process coupled with enhanced activation.


Assuntos
Músculo Esquelético/fisiopatologia , Distrofias Musculares/genética , Distrofias Musculares/fisiopatologia , Paralisia/genética , Paralisia/fisiopatologia , Canais de Sódio/genética , Canais de Sódio/fisiologia , Adulto , Substituição de Aminoácidos , Linhagem Celular , DNA/genética , Eletrofisiologia , Feminino , Humanos , Hiperpotassemia/fisiopatologia , Masculino , Potenciais da Membrana/fisiologia , Mutagênese , Mutação/genética , Técnicas de Patch-Clamp , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
17.
Neurology ; 42(5): 1046-8, 1992 May.
Artigo em Inglês | MEDLINE | ID: mdl-1315941

RESUMO

Recent in vitro electrophysiologic studies have demonstrated abnormal sodium channel gating in muscle from patients with Thomsen's disease and have called the chloride hypothesis into question. Abnormal sodium channel function, like myotonia, is a feature common to Thomsen's disease and several myotonias that are genetically linked to a chromosome-17q sodium channel locus. We present a pedigree segregating an allele for Thomsen's disease that is unlinked to this sodium channel locus, thus constituting evidence of genetic heterogeneity among the nondystrophic myotonias.


Assuntos
Miotonia Congênita/genética , Criança , Pré-Escolar , Mapeamento Cromossômico , Cromossomos Humanos Par 17 , DNA/análise , Feminino , Ligação Genética , Humanos , Escore Lod , Masculino , Linhagem , Canais de Sódio/genética
18.
Neurology ; 42(2): 431-3, 1992 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-1310531

RESUMO

We performed linkage analysis in a pedigree segregating an allele for autosomal dominant, painful myotonia that is potassium sensitive and responsive to acetazolamide. This allele was tightly linked to a skeletal-muscle, sodium channel locus which is now a candidate for the site of the mutational defect in acetazolamide-responsive myotonia congenita. Since this sodium channel locus is completely linked to the disease allele in all hyperkalemic periodic paralysis and paramyotonia congenita pedigrees studied, the molecular alteration causing acetazolamide-responsive myotonia congenita is likely an allelic defect in this human, skeletal-muscle, sodium channel gene.


Assuntos
Ligação Genética , Miotonia Congênita/genética , Canais de Sódio/genética , Mapeamento Cromossômico , Feminino , Humanos , Masculino , Linhagem
19.
Neurology ; 44(8): 1500-3, 1994 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-8058156

RESUMO

Hyperkalemic periodic paralysis (hyperKPP) and paramyotonia congenita (PC) are genetic muscle disorders sharing the common features of myotonia and episodic weakness. In hyperKPP, patient symptoms and signs are worsened by elevated serum potassium, whereas in PC, muscle cooling exacerbates the condition. There are patients in whom features of both hyperKPP and PC are present. These diseases result from molecular alterations in the adult skeletal muscle sodium channel. This report summarizes our sodium channel mutation analysis in 25 families with hyperKPP and PC. We also report the putative disease-causing mutation in acetazolamide-responsive myotonia congenita, a related disease in which myotonia is worsened by potassium but in which episodic weakness does not occur. This missense mutation (I1160V) occurs at a very highly conserved position in the sodium channel, cosegregates with the disease, and was not present in any of a large panel of normal DNAs. Electrophysiologic characterization of specific mutations will lead to better understanding of the biophysics of this voltage-gated ion channel.


Assuntos
Acetazolamida/uso terapêutico , Hiperpotassemia/genética , Mutação , Miotonia Congênita/genética , Paralisias Periódicas Familiares/genética , Canais de Sódio/genética , Autorradiografia , Sequência de Bases , Feminino , Humanos , Masculino , Dados de Sequência Molecular , Miotonia Congênita/tratamento farmacológico , Conformação de Ácido Nucleico , Reação em Cadeia da Polimerase
20.
Neurology ; 47(4): 993-8, 1996 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-8857733

RESUMO

Myotonia, defined as delayed relaxation of muscle after contraction, is seen in a group of genetic disorders that includes autosomal dominant myotonia congenita (Thomsen's disease) and autosomal recessive myotonia congenita (Becker's disease). Both disorders are characterized electrophysiologically by increased excitability of muscle fibers, reflected in clinical myotonia. These diseases are similar except that transient weakness is seen in patients with Becker's, but not Thomsen's disease. Becker's and Thomsen's diseases are caused by mutations in the skeletal muscle voltage-gated chloride channel gene (CLCN1). Genetic screening of a panel of 18 consecutive myotonia congenita (MC) probands for mutation in CLCN1 revealed that a novel Gln-68-Stop nonsense mutation predicts premature truncation of the chloride channel protein. Four previously reported mutations, Arg-894-stop, Arg-338-Gln, Gly-230-Glu, and del 1437-1450, were also noted in our sample set. The Arg-338-Gln and Gly-230-Glu mutations were found in patients with different phenotypes from those of previous reports. Further study of the Arg-338-Gln and Gln-230-Glu alleles may shed light on variable modes of transmission (dominant versus recessive) in different families. Physiologic study of these mutations may lead to better understanding of the pathophysiology of myotonia in these patients and of voltage-gated chloride channel structure/function relationships in skeletal muscles.


Assuntos
Canais de Cloreto/genética , Músculo Esquelético/metabolismo , Miotonia Congênita/genética , Éxons/genética , Humanos , Mutação , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA