Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 29(3)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38338422

RESUMO

The fusion of penetrating peptides (PPs), e.g., cell penetration peptides (CPPs) or antimicrobial peptides (AMPs), together with antimicrobial agents is an expanding research field. Specific AMPs, such as lactoferricin B (LfcinB), have demonstrated strong antibacterial, antifungal, and antiparasitic activity, as well as valuable anticancer activity, proving beneficial in the development of anticancer conjugates. The resulting conjugates offer potential dual functionality, acting as both an anticancer and an antimicrobial agent. This is especially necessary in cancer treatment, where microbial infections pose a critical risk. Leukemic cells frequently exhibit altered outer lipid membranes compared to healthy cells, making them more sensitive to compounds that interfere with their membrane. In this study, we revisited and reanalyzed our earlier research on LfcinB and its conjugates. Furthermore, we carried out new experiments with a specific focus on cell proliferation, changes in membrane asymmetric phosphatidylserine location, intracellular reactive oxygen species (ROS) generation, mitochondrial functions, and in vitro bacterial topoisomerase inhibition.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/farmacologia , Lactoferrina/farmacologia , Lactoferrina/química , Anti-Infecciosos/farmacologia , Peptídeos/química , Testes de Sensibilidade Microbiana
2.
Mol Pharmacol ; 105(1): 39-53, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977824

RESUMO

Hematopoietic cell transplantation (HCT) is often considered a last resort leukemia treatment, fraught with limited success due to microbial infections, a leading cause of mortality in leukemia patients. To address this critical issue, we explored a novel approach by synthesizing antileukemic agents containing antibacterial substances. This innovative strategy involves conjugating fluoroquinolone antibiotics, such as ciprofloxacin (CIP) or levofloxacin (LVX), with the cell-penetrating peptide transportan 10 (TP10). Here, we demonstrate that the resultant compounds display promising biologic activities in preclinical studies. These novel conjugates not only exhibit potent antimicrobial effects but are also selective against leukemia cells. The cytotoxic mechanism involves rapid disruption of cell membrane asymmetry leading to membrane damage. Importantly, these conjugates penetrated mammalian cells, accumulating within the nuclear membrane without significant effect on cellular architecture or mitochondrial function. Molecular simulations elucidated the aggregation tendencies of TP10 conjugates within lipid bilayers, resulting in membrane disruption and permeabilization. Moreover, mass spectrometry analysis confirmed efficient reduction of disulfide bonds within TP10 conjugates, facilitating release and activation of the fluoroquinolone derivatives. Intriguingly, these compounds inhibited human topoisomerases, setting them apart from traditional fluoroquinolones. Remarkably, TP10 conjugates generated lower intracellular levels of reactive oxygen species compared with CIP and LVX. The combination of antibacterial and antileukemic properties, coupled with selective cytostatic effects and minimal toxicity toward healthy cells, positions TP10 derivatives as promising candidates for innovative therapeutic approaches in the context of antileukemic HCT. This study highlights their potential in search of more effective leukemia treatments. SIGNIFICANCE STATEMENT: Fluoroquinolones are commonly used antibiotics, while transportan 10 (TP10) is a cell-penetrating peptide (CPP) with anticancer properties. In HCT, microbial infections are the primary cause of illness and death. Combining TP10 with fluoroquinolones enhanced their effects on different cell types. The dual pharmacological action of these conjugates offers a promising proof-of-concept solution for leukemic patients undergoing HCT. Strategically designed therapeutics, incorporating CPPs with antibacterial properties, have the potential to reduce microbial infections in the treatment of malignancies.


Assuntos
Antineoplásicos , Peptídeos Penetradores de Células , Leucemia , Animais , Humanos , Fluoroquinolonas/farmacologia , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/metabolismo , Antineoplásicos/farmacologia , Antibacterianos/farmacologia , Leucemia/tratamento farmacológico , Transplante de Células , Mamíferos/metabolismo
3.
Molecules ; 28(23)2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-38067510

RESUMO

Arginine, due to the guanidine moiety, increases peptides' hydrophilicity and enables interactions with charged molecules, but at the same time, its presence in a peptide chain might reduce its permeability through biological membranes. This might be resolved by temporary coverage of the peptide charge by lipophilic, enzyme-sensitive alkoxycarbonyl groups. Unfortunately, such a modification of a guanidine moiety has not been reported to date and turned out to be challenging. Here, we present a new, optimized strategy to obtain arginine building blocks with increased lipophilicity that were successfully utilized in the solid-phase peptide synthesis of novel arginine vasopressin prodrugs.


Assuntos
Arginina , Técnicas de Síntese em Fase Sólida , Arginina/química , Peptídeos/química , Guanidinas
4.
Int J Mol Sci ; 23(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35328489

RESUMO

Human neurohormone vasopressin (AVP) is synthesized in overlapping regions in the hypothalamus. It is mainly known for its vasoconstricting abilities, and it is responsible for the regulation of plasma osmolality by maintaining fluid homeostasis. Over years, many attempts have been made to modify this hormone and find AVP analogues with different pharmacological profiles that could overcome its limitations. Non-peptide AVP analogues with low molecular weight presented good affinity to AVP receptors. Natural peptide counterparts, found in animals, are successfully applied as therapeutics; for instance, lypressin used in treatment of diabetes insipidus. Synthetic peptide analogues compensate for the shortcomings of AVP. Desmopressin is more resistant to proteolysis and presents mainly antidiuretic effects, while terlipressin is a long-acting AVP analogue and a drug recommended in the treatment of varicose bleeding in patients with liver cirrhosis. Recently published results on diverse applications of AVP analogues in medicinal practice, including potential lypressin, terlipressin and ornipressin in the treatment of SARS-CoV-2, are discussed.


Assuntos
Tratamento Farmacológico da COVID-19 , Diabetes Insípido/prevenção & controle , SARS-CoV-2/efeitos dos fármacos , Vasopressinas/uso terapêutico , Animais , Antidiuréticos/química , Antidiuréticos/metabolismo , Antidiuréticos/uso terapêutico , COVID-19/epidemiologia , COVID-19/virologia , Desamino Arginina Vasopressina/química , Desamino Arginina Vasopressina/metabolismo , Desamino Arginina Vasopressina/uso terapêutico , Diabetes Insípido/metabolismo , Hemostáticos/química , Hemostáticos/metabolismo , Hemostáticos/uso terapêutico , Humanos , Lipressina/química , Lipressina/metabolismo , Lipressina/uso terapêutico , Estrutura Molecular , Ornipressina/química , Ornipressina/metabolismo , Ornipressina/uso terapêutico , Pandemias/prevenção & controle , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiologia , Terlipressina/química , Terlipressina/metabolismo , Terlipressina/uso terapêutico , Vasopressinas/química , Vasopressinas/metabolismo
5.
Molecules ; 26(2)2021 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-33445797

RESUMO

A major obstacle in tumor treatment is associated with the poor penetration of a therapeutic agent into the tumor tissue and with their adverse influence on healthy cells, which limits the dose of drug that can be safely administered to cancer patients. Gemcitabine is an anticancer drug used to treat a wide range of solid tumors and is a first-line treatment for pancreatic cancer. The effect of gemcitabine is significantly weakened by its rapid plasma degradation. In addition, the systemic toxicity and drug resistance significantly reduce its chemotherapeutic efficacy. Up to now, many approaches have been made to improve the therapeutic index of gemcitabine. One of the recently developed approaches to improve conventional chemotherapy is based on the direct targeting of chemotherapeutics to cancer cells using the drug-peptide conjugates. In this work, we summarize recently published gemcitabine peptide-based conjugates and their efficacy in anticancer therapy.


Assuntos
Desoxicitidina/análogos & derivados , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Peptídeos/uso terapêutico , Animais , Peptídeos Penetradores de Células/farmacologia , Peptídeos Penetradores de Células/uso terapêutico , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Humanos , Nanopartículas/química , Peptídeos/farmacologia , Gencitabina
6.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630159

RESUMO

Seven conjugates composed of well-known fluoroquinolone antibacterial agents, ciprofloxacin (CIP) or levofloxacin (LVX), and a cell-penetrating peptide transportan 10 (TP10-NH2) were synthesised. The drugs were covalently bound to the peptide via an amide bond, methylenecarbonyl moiety, or a disulfide bridge. Conjugation of fluoroquinolones to TP10-NH2 resulted in congeners demonstrating antifungal in vitro activity against human pathogenic yeasts of the Candida genus (MICs in the 6.25 - 100 µM range), whereas the components were poorly active. The antibacterial in vitro activity of most of the conjugates was lower than the activity of CIP or LVX, but the antibacterial effect of CIP-S-S-TP10-NH2 was similar to the mother fluoroquinolone. Additionally, for two representative CIP and LVX conjugates, a rapid bactericidal effect was shown. Compared to fluoroquinolones, TP10-NH2 and the majority of its conjugates generated a relatively low level of reactive oxygen species (ROS) in human embryonic kidney cells (HEK293) and human myeloid leukemia cells (HL-60). The conjugates exhibited cytotoxicity against three cell lines, HEK293, HepG2 (human liver cancer cell line), and LLC-PK1 (old male pig kidney cells), with IC50 values in the 10 - 100 µM range and hemolytic activity. The mammalian toxicity was due to the intrinsic cytoplasmic membrane disruption activity of TP10-NH2 since fluoroquinolones themselves were not cytotoxic. Nevertheless, the selectivity index values of the conjugates, both for the bacteria and human pathogenic yeasts, remained favourable.


Assuntos
Anti-Infecciosos/síntese química , Antineoplásicos/síntese química , Peptídeos Penetradores de Células , Ciprofloxacina , Levofloxacino , Proteínas Recombinantes de Fusão , Animais , Anti-Infecciosos/farmacologia , Candida/efeitos dos fármacos , Candida/metabolismo , Farmacorresistência Bacteriana , Células HEK293 , Células HL-60 , Células Hep G2 , Humanos , Testes de Sensibilidade Microbiana , Suínos
7.
Bioconjug Chem ; 29(9): 3060-3071, 2018 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-30048118

RESUMO

Three chimera peptides composed of bovine lactoferrampin and the analogue of truncated human neutrophil peptide 1 were synthesized by the solid-phase method. In two compounds peptide chains were connected via isopeptide bond, whereas in the third one disulfide bridge served as a linker. All three chimeras displayed significantly higher antimicrobial activity than the constituent peptides as well as their equimolar mixtures. The one with a disulfide bridge displayed selectivity toward Gram-positive bacteria and was able to penetrate bacterial cells. The chimeric peptides demonstrated low in vitro mammalian cytotoxicity, especially against benign cells. The significance of linker type was also reflected in the secondary structure and proteolytic stability of studied compounds. Presented results proved that such chimeras are good lead structures for designing antimicrobial drugs.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Antifúngicos/química , Antifúngicos/farmacologia , Lactoferrina/química , Fragmentos de Peptídeos/química , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/farmacologia , alfa-Defensinas/química , Animais , Candida/efeitos dos fármacos , Bovinos , Linhagem Celular Tumoral , Dicroísmo Circular , Ensaios de Seleção de Medicamentos Antitumorais , Corantes Fluorescentes/química , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Estrutura Secundária de Proteína , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade
8.
Biopolymers ; 108(2)2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27627696

RESUMO

A series of analogues of trypsin inhibitor SFTI-1 were designed and synthesized to monitor peptide splicing. In the middle part of the SFTI-1 analogues, which is released upon incubation with proteinase, the RGD sequence or an acceptor of fluorescence for FRET was introduced. The results of studies with trypsin confirmed that the designed analogues underwent peptide splicing. Furthermore, we showed that a FRET displaying SFTI-1 analogue was internalized into the HaCaT keratinocytes, where it was degraded. Therefore, both proteolysis and the reduction of the disulfide bridge of the peptide took place. As a result, such analogues are a convenient tool to trace the proteolytic activity inside the cell. However, the cytotoxicity of SFTI-1 analogues grafted with the RGD sequence did not correlate with their susceptibility to peptide splicing. Nevertheless, these peptides were slightly more active than the reference peptide (GRGDNP). Interestingly, one of the analogues assigned as [desSer6 ]VI, under experimental conditions, appeared significantly more cytotoxic towards cancer cells U87-MG in contrast to the reference peptide.


Assuntos
Queratinócitos/metabolismo , Peptídeos/metabolismo , Inibidores da Tripsina/metabolismo , Tripsina/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Humanos , Queratinócitos/citologia , Espectrometria de Massas , Microscopia de Fluorescência , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Proteólise , Tripsina/química , Inibidores da Tripsina/química
9.
ACS Med Chem Lett ; 14(4): 458-465, 2023 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-37077382

RESUMO

Furin is a human serine protease responsible for activating numerous physiologically relevant cell substrates and is also involved in the development of various pathological conditions, including inflammatory diseases, cancers, and viral and bacterial infections. Therefore, compounds with the ability to inhibit furin's proteolytic action are regarded as potential therapeutics. Here we took the combinatorial chemistry approach (library consisting of 2000 peptides) to obtain new, strong, and stable peptide furin inhibitors. The extensively studied trypsin inhibitor SFTI-1 was used as a leading structure. A selected monocylic inhibitor was further modified to finally yield five mono- or bicyclic furin inhibitors with values of K i in the subnanomolar range. Inhibitor 5 was the most active (K i = 0.21 nM) and significantly more proteolytically resistant than the reference furin inhibitor described in the literature. Moreover, it reduced furin-like activity in PANC-1 cell lysate. Detailed analysis of furin-inhibitor complexes using molecular dynamics simulations is also reported.

10.
Pharmaceutics ; 14(4)2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35456526

RESUMO

Infections of Candida spp. etiology are frequently treated with azole drugs. Among azoles, the most widely used in the clinical scenario remains fluconazole (FLC). Promising results in treatment of dangerous, systemic Candida infections demonstrate the advantages of combined therapies carried out with combinations of at least two different antifungal agents. Here, we report five conjugates composed of covalently linked FLC and cell penetrating or antimicrobial peptide: TP10-7-NH2, TP10-NH2, LFcinB(2-11)-NH2, LFcinB[Nle1,11]-NH2, and HLopt2-NH2, with aspects of design, chemical synthesis and their biological activities. Two of these compounds, namely FLCpOH-TP10-NH2 and FLCpOH-TP10-7-NH2, exhibit high activity against reference strains and fluconazole-resistant clinical isolates of C. albicans, including strains overproducing drug transporters. Moreover, both of them demonstrate higher fungicidal effects compared to fluconazole. Analysis performed with fluorescence and scanning electron microscopy as well as flow cytometry indicated the cell membrane as a molecular target of synthesized conjugates. An important advantage of FLCpOH-TP10-NH2 and FLCpOH-TP10-7-NH2 is their low cytotoxicity. The IC90 value for the human cells after 72 h treatment was comparable to the MIC50 value after 24 h treatment for most strains of C. albicans. In reported conjugates, FLC was linked to the peptide by its hydroxyl group. It is worth noting that conjugation of FLC by the nitrogen atom of the triazole ring led to practically inactive compounds. Two compounds produced by us and reported herein appear to be potential candidates for novel antifungal agents.

11.
Antibiotics (Basel) ; 10(10)2021 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-34680817

RESUMO

The emergence and spread of multiple drug-resistant bacteria strains caused the development of new antibiotics to be one of the most important challenges of medicinal chemistry. Despite many efforts, the commercial availability of peptide-based antimicrobials is still limited. The presented study aims to explain that immobilized artificial membrane chromatography can support the characterization of antimicrobial peptides. Consequently, the chromatographic experiments of three groups of related peptide substances: (i) short cationic lipopeptides, (ii) citropin analogs, and (iii) conjugates of ciprofloxacin and levofloxacin, with a cell-penetrating peptide were discussed. In light of the discussion of the mechanisms of action of these compounds, the obtained results were interpreted.

12.
Metallomics ; 12(12): 2199, 2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33320153

RESUMO

Correction for 'Stability of Cu(ii) complexes with FomA protein fragments containing two His residues in the peptide chain' by Monika Katarzyna Lesiów et al., Metallomics, 2019, 11, 1518-1531, DOI: 10.1039/C9MT00131J.

13.
J Inorg Biochem ; 212: 111250, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32920436

RESUMO

Mono- and dinuclear Cu(II) complexes with Ac-PTVHNEYH-NH2 (L1) and Ac-NHHTLND-NH2 (L2) peptides from FomA protein of Fusobacterium nucleatum were studied by potentiometry, spectroscopic methods (UV-Vis, CD, EPR) and MS technique. The dominant mononuclear complexes for L1 ligand are: CuHL (pH range 5.0-6.0) with 2N {2Nim}, CuH-2L (pH range 8.0-8.5) and CuH-3L species (above pH 9.0) with 4N {Nim, 3N-} coordination modes. The complexes: CuH-1L with 3N {2Nim, N-}, CuH-2L with 3N {Nim, 2N-} and CuH-3L with 4N {Nim, 3N-} binding sites are proposed for the L2 ligand. Probably in the CuH-2L complex for CuL2 system the second His residue in His-His sequence is bound to Cu(II) ion, while the first His residue may stabilize this complex by His-His and/or His-Cu(II) interactions. The dominant dinuclear Cu2L1 complexes in the pH range 6.5-10.5 are: the Cu2H-4L and Cu2H-6L species with 3N{Nim, 2N-}4N{Nim, 3N-} and 4N{Nim, 3N-}4N{Nim, 3N-} binding sites, respectively. In the case of the Cu2L2 complex in the pH range 7.2-10.5, the Cu2H-4L and Cu2H-7L species dominate with 2N{Nim, N-}4N{Nim, 3N-} and (Cu(OH)42-4N{Nim, 3N-}) coordination modes, respectively. The ability to generate reactive oxygen species (ROS) by uncomplexed Cu(II) ions, ligands and their complexes at pH 7.4 in the presence of hydrogen peroxide or ascorbic acid was studied. UV-Vis, luminescence, EPR spin trapping and gel electrophoresis methods were used. Both complexes produce higher level of ROS compared to those of their ligands. ROS produced by Cu(II) complexes are hydroxyl radical and singlet oxygen, which contribute to oxidative DNA cleavage.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Complexos de Coordenação/metabolismo , Cobre/metabolismo , DNA/metabolismo , Histidina/metabolismo , Peptídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Motivos de Aminoácidos , Fusobacterium nucleatum/metabolismo , Histidina/química , Potenciometria , Análise Espectral/métodos
14.
Biochimie ; 171-172: 178-186, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32169666

RESUMO

A gradual truncation of the primary structure of frog skin-derived Huia versabilis Bowman-Birk peptidic inhibitor (HV-BBI) resulted in 18-times stronger inhibitor of matriptase-1 (peptide 6, Ki = 8 nm) in comparison to the full-length HV-BBI (Ki = 155 nm). Analogous increase in the inhibitory activity in correlation with the peptide length reduction was not observed in case of other serine proteases, bovine trypsin (Ki = 151 nm for peptide 6 and Ki = 120 nm for HV-BBI) and plasmin (Ki = 120 nm for peptide 6 and 82 nm for HV-BBI). Weaker binding affinity to these enzymes emphasized an inhibitory specificity of peptide 6. Molecular dynamic analysis revealed that the observed variations in the binding affinity of peptide 6 and HV-BBI with matriptase-1 are associated with the entropic differences of the unbound peptides. Moreover, several aspects explaining differences in the inhibition of matriptase-1 by peptide 6 (bearing the C-terminal amide group) and its two analogues, peptide 6∗ (having the C-terminal carboxyl group, Ki = 473 nm) and cyclic peptide 6∗∗ (Ki = 533 nm), both exhibiting more than 50-fold reduced inhibitory potency, were discovered. It was also shown that peptide 6 presented significantly higher resistance to proteolytic degradation in human serum than HV-BBI. Additional investigations revealed that, in contrast to some amphibian-derived inhibitors, HV-BBI and its truncated analogues do not possess bactericidal activity, thus they cannot be considered as bifunctional agents.


Assuntos
Peptídeos , Serina Endopeptidases/metabolismo , Animais , Bovinos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Peptídeos/química , Peptídeos/farmacologia , Proteólise
15.
Peptides ; 117: 170079, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30959143

RESUMO

Eight new peptide conjugates composed of modified bovine lactoferricin truncated analogues (LFcinB) and one of the three antimicrobials - ciprofloxacin (CIP), levofloxacin (LVX), and fluconazole (FLC) - were synthesized. Four different linkers were applied to connect a peptide and an antimicrobial agent. The FLC-containing peptidic conjugates were synthesized using the "click chemistry" method. This novel approach is reported here for the first time. Unlike their components, CIP- and LVX-based conjugates exerted activity against Candida yeast. Similarly to the constituent peptides, synthesized conjugates showed activity against Gram-positive bacteria, especially S. epidermidis. The most active were the conjugates containing CIP linked to the peptide by the redox-sensitive disulfide bridge. Our results show a significant role of a linker between antimicrobial agent and a peptide. This was also confirmed by the lack of synergistic effects on the antimicrobial activity of the constituent compounds. Moreover, cytotoxicity assays revealed that the proposed conjugates cause a comparatively low cytotoxic effect in reference to antibiotics widely used in therapies. Therefore, they can be deliberated as attractive leading structures for the development of drugs.


Assuntos
Anti-Infecciosos , Candida/crescimento & desenvolvimento , Lactoferrina , Peptídeos , Staphylococcus epidermidis/crescimento & desenvolvimento , Células A549 , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Células HEK293 , Células HL-60 , Humanos , Lactoferrina/química , Lactoferrina/farmacologia , Peptídeos/síntese química , Peptídeos/química , Peptídeos/farmacologia
16.
ACS Chem Biol ; 14(10): 2233-2242, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31513374

RESUMO

Recent studies have shown that modified human lactoferrin 20-31 fragment, named HLopt2, possesses antibacterial and antifungal activity. Thus, we decided to synthesize and evaluate the biological activity of a series of conjugates based on this peptide and one of the antimicrobials with proven antibacterial (ciprofloxacin, CIP, and levofloxacin, LVX) or antifungal (fluconazole, FLC) activity. The drugs were covalently connected to the peptide via amide, methylenecarbonyl moieties, or a disulfide bridge. The antibacterial and antifungal activities were evaluated under Clinical and Laboratory Standard Institute (CLSI) recommended conditions or in a low-salt brain-heart infusion diluted medium (BHI1/100). Results showed that conjugation of the peptide with the drug increased its antimicrobial activity up to 4-fold. Under CLSI-recommended conditions, all the compounds revealed rather low efficiency. Among conjugates, the highest antibacterial activity was recorded for the CIP-Cys-S-S-HLopt2-NH2 (III). In BHI1/100, which had lower differentiating properties, all of the conjugates revealed low MIC and MMC (minimum inhibitory and microbicidal concentrations) values. The disulfide bridge used as a linker in the most active conjugate (III) upon incubation with S. aureus cells is reduced, releasing constituent peptide and CIP-Cys. In addition, we showed that its fluorescently labeled analogue and constituent peptide are able to be internalized into both C. albicans and S. aureus cells. Moreover, the invaluable advantage of the presented conjugates was their low toxicity to mammalian cells and very low hemolytic activity. The current research can form a solid basis for further in vivo studies and drug development.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Imunoconjugados/farmacologia , Lactoferrina/farmacologia , Fragmentos de Peptídeos/farmacologia , Animais , Antibacterianos/síntese química , Antibacterianos/toxicidade , Antifúngicos/síntese química , Antifúngicos/toxicidade , Candida albicans/efeitos dos fármacos , Ciprofloxacina/síntese química , Ciprofloxacina/farmacologia , Ciprofloxacina/toxicidade , Estabilidade de Medicamentos , Escherichia coli/efeitos dos fármacos , Fluconazol/síntese química , Fluconazol/farmacologia , Fluconazol/toxicidade , Células HEK293 , Células Hep G2 , Humanos , Imunoconjugados/toxicidade , Lactoferrina/síntese química , Lactoferrina/toxicidade , Levofloxacino/síntese química , Levofloxacino/farmacologia , Levofloxacino/toxicidade , Masculino , Testes de Sensibilidade Microbiana , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/toxicidade , Staphylococcus aureus/efeitos dos fármacos , Suínos
17.
Future Med Chem ; 10(23): 2745-2761, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30518272

RESUMO

Matriptase-2 (MT2) is a membrane-anchored proteolytic enzyme. It acts as the proteolytic key regulator in human iron homeostasis. A high expression level can lead to iron overload diseases, whereas mutations in the gene encoding MT2, TMPRSS6, may result in various forms of iron deficiency anemia. Recently, MT2 has been reported as a positive prognostic factor in breast and prostate cancers. However, the exact functions of MT2 in various pathophysiological conditions are still not fully understood. In this review, we describe the synthetic tools designed and synthesized to regulate or monitor MT2 proteolytic activity and present the latest knowledge about the role of MT2 in iron homeostasis and cancer.

18.
J Inorg Biochem ; 189: 69-80, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30243120

RESUMO

Fusobacterium nucleatum is an anaerobic, Gram-negative bacteria linked to colon cancer. It is interesting to determine how metal ions interact with bacterial adhesin proteins. To this end, the coordination of ATDAAS-NH2 and MKKFL-NH2 fragments of Fusobacterium adhesin A (FadA) to copper(II) ions was studied by potentiometry, spectroscopic techniques (UV-Vis, CD, EPR and NMR) and the density functional theory (DFT) methods. At pH 6.8 (colon physiological pH), the metal ion in the first peptide (ATDAAS-NH2) is coordinated by one oxygen and three nitrogen donors while in the second one (MKKFL-NH2) - by sulfur and three nitrogen atoms. Both complexes form two five- and one six-membered stable chelate rings. Moreover, reactivity studies confirmed the production of reactive oxygen species such as hydroxyl radical, superoxide anion radical and singlet oxygen. Generation of reactive oxygen species (ROS) was observed during gel electrophoresis and spectroscopic assays with reporting molecules like NDMA (N,N-dimethyl-p-nitrosoaniline) and NBT (Nitrotetrazolium Blue Chloride). All reactions were conducted in the presence of hydrogen peroxide as endogenous oxidant.


Assuntos
Adesinas Bacterianas/química , Cobre/química , Fusobacterium nucleatum/química , Espectroscopia de Ressonância de Spin Eletrônica , Concentração de Íons de Hidrogênio , Potenciometria , Espécies Reativas de Oxigênio/química , Superóxidos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA