Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 609(7927): 502-506, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36104553

RESUMO

Hund's multiplicity rule states that a higher spin state has a lower energy for a given electronic configuration1. Rephrasing this rule for molecular excited states predicts a positive energy gap between spin-singlet and spin-triplet excited states, as has been consistent with numerous experimental observations over almost a century. Here we report a fluorescent molecule that disobeys Hund's rule and has a negative singlet-triplet energy gap of -11 ± 2 meV. The energy inversion of the singlet and triplet excited states results in delayed fluorescence with short time constants of 0.2 µs, which anomalously decrease with decreasing temperature owing to the emissive singlet character of the lowest-energy excited state. Organic light-emitting diodes (OLEDs) using this molecule exhibited a fast transient electroluminescence decay with a peak external quantum efficiency of 17%, demonstrating its potential implications for optoelectronic devices, including displays, lighting and lasers.

2.
J Phys Chem A ; 127(48): 10189-10196, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38011598

RESUMO

A computational design of linearly extended multiple resonance (MR)-type BN molecules based on DABNA-1 is proposed herein in the quest to find potential candidates that exhibit a negative singlet-triplet gap (ΔEST) and a large oscillator strength value. The impact of a proper account of the electron correlation in the lowest singlet and triplet excited states is systematically investigated by using double-hybrid functionals within the TD-DFT framework, as well as wavefunction-based methods (EOM-CCSD and SCS-CC2), since this contribution plays an essential role in driving the magnitude of the ΔEST in MR-TADF and inverted singlet-triplet gap compounds. Our results point out a gradual reduction of the ΔEST gap with respect to the increasing sum of the number of B and N atoms, reaching negative ΔEST values for some molecules as a function of their size. The double-hybrid functionals reproduce the gap with only slight deviation compared to available experimental data for DABNA-1, ν-DABNA, and mDBCz and nicely agree with high-level quantum mechanical methods (e.g., EOM-CCSD and SCS-CC2). Larger oscillator strengths are found compared to the azaphenalene-type molecules, also exhibiting the inversion of their singlet and triplet excited states. We hope this study can serve as a motivation for further design of the molecules showing negative ΔEST based on boron- and nitrogen-doped polyaromatic hydrocarbons.

3.
Chemistry ; 25(71): 16294-16300, 2019 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-31573108

RESUMO

Exploration of pure metal-free organic molecules that exhibit strong room-temperature phosphorescence (RTP) is an emerging research topic. In this regard, unveiling the design principles for an efficient RTP molecule is an essential, but challenging, task. A small molecule is an ideal platform to precisely understand the fundamental role of each functional component because the parent molecule can be easily derivatized. Here, the RTP behaviors of a series of 3-pyridylcarbazole derivatives are presented. Experimental studies in combination with theoretical calculations reveal the crucial role of the n orbital on the central pyridine ring in the dramatic enhancement of the intersystem crossing between the charge-transfer-excited singlet state and the locally excited triplet states. Single-crystal X-ray crystallographic studies apparently indicate that both the pyridine ring and fluorine atom contribute to the enhancement of the RTP because of the restricted motion owing to weak C-H⋅⋅⋅N and H⋅⋅⋅F hydrogen-bonding interactions. The single crystal of the fluorine-substituted derivative shows an ultra-long phosphorescent lifetime (τP ) of 1.1 s and a phosphorescence quantum yield (ΦP ) of 1.2 %, whereas the bromine-substituted derivative exhibits τP of 0.15 s with a ΦP of 7.9 %. We believe that this work provides a fundamental and universal guideline for the generation of pure organic molecules exhibiting strong RTP.

4.
Inorg Chem ; 57(4): 1950-1957, 2018 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-29420018

RESUMO

We report the development of solution-processed reduced phosphomolybdic acid (rPMA) containing molybdenum oxide units for post-treatment-free hole-injection layers (HILs) in organic light-emitting devices (OLEDs). The physical and chemical properties of rPMA, including its structure, solubility in several solvents, film surface roughness, work function, and valence states, were investigated. The formation of gap states just below the Fermi level of rPMA was observed. Without any post-treatment after the formation of rPMA films, OLEDs employing rPMA as an HIL exhibited a very low driving voltage and a high luminous efficiency. The low driving voltage was attributed to the energy level alignment between the gap states formed by reduction and the HOMO level of the hole-transport layer material N,N'-bis(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine.

5.
Angew Chem Int Ed Engl ; 54(25): 7332-5, 2015 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25940114

RESUMO

Benzene is the simplest aromatic hydrocarbon with a six-membered ring. It is one of the most basic structural units for the construction of π conjugated systems, which are widely used as fluorescent dyes and other luminescent materials for imaging applications and displays because of their enhanced spectroscopic signal. Presented herein is 2,5-bis(methylsulfonyl)-1,4-diaminobenzene as a novel architecture for green fluorophores, established based on an effective push-pull system supported by intramolecular hydrogen bonding. This compound demonstrates high fluorescence emission and photostability and is solid-state emissive, water-soluble, and solvent- and pH-independent with quantum yields of Φ=0.67 and Stokes shift of 140 nm (in water). This architecture is a significant departure from conventional extended π-conjugated systems based on a flat and rigid molecular design and provides a minimum requirement for green fluorophores comprising a single benzene ring.


Assuntos
Derivados de Benzeno/química , Diaminas/química , Corantes Fluorescentes/química , Cristalografia por Raios X , Fluorescência , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Modelos Moleculares , Teoria Quântica , Solubilidade , Solventes/química , Espectrometria de Fluorescência , Água/química
6.
Small Methods ; 8(2): e2300397, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37204077

RESUMO

Benefiting from the synergistic development of material design, device engineering, and the mechanistic understanding of device physics, the certified power conversion efficiencies (PCEs) of single-junction non-fullerene organic solar cells (OSCs) have already reached a very high value of exceeding 19%. However, in addition to PCEs, the poor stability is now a challenging obstacle for commercial applications of organic photovoltaics (OPVs). Herein, recent progress made in exploring operational mechanisms, anomalous photoelectric behaviors, and improving long-term stability in non-fullerene OSCs are highlighted from a novel and previously largely undiscussed perspective of engineering exciton and charge carrier pathways. Considering the intrinsic connection among multiple temporal-scale photocarrier dynamics, multi-length scale morphologies, and photovoltaic performance in OPVs, this review delineates and establishes a comprehensive and in-depth property-function relationship for evaluating the actual device stability. Moreover, this review has also provided some valuable photophysical insights into employing the advanced characterization techniques such as transient absorption spectroscopy and time-resolved fluorescence imagings. Finally, some of the remaining major challenges related to this topic are proposed toward the further advances of enhancing long-term operational stability in non-fullerene OSCs.

7.
ACS Appl Mater Interfaces ; 15(9): 12109-12118, 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36813758

RESUMO

The charge transfer between the donor and acceptor determines the photogenerated carrier density in organic solar cells. However, a fundamental understanding regarding the charge transfer at donor/acceptor interfaces with high-density traps has not been fully addressed. Herein, a general correlation between trap densities and charge transfer dynamics is established by adopting a series of high-efficiency organic photovoltaic blends. It is found that the electron transfer rates are reduced with increased trap densities, while the hole transfer rates are independent of trap states. The local charges captured by traps can induce potential barrier formation around recombination centers, leading to the suppression of electron transfer. For the hole transfer process, the thermal energy provides a sufficient driving force, which ensures an efficient transfer rate. As a result, a 17.18% efficiency is obtained for PM6:BTP-eC9-based devices with the lowest interfacial trap densities. This work highlights the importance of interfacial traps in charge transfer processes and proposes an underlying insight into the charge transfer mechanism at nonideal interfaces in organic heterostructures.

8.
RSC Adv ; 12(10): 6255-6264, 2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35424533

RESUMO

Optical properties of semiconductor quantum dots (QDs) can be tuned by doping with transition metal ions. In this study, water-soluble CdSe/ZnS:Mn/ZnS QDs with the core/shell/shell structure were synthesized through a hydrothermal method, in which the surface of the CdSe core was coated with a ZnS:Mn shell and ZnS capping shell. Herein, the CdSe core QDs were prepared first and then doped with Mn2+; therefore, the QD size and doping level could be controlled independently and interference from the self-purifying effect could be avoided. When CdSe cores with diameters less than 1.9 nm were used, Mn-related photoluminescence (PL) was observed as the main PL band, whereas the band-edge PL was mainly observed when larger CdSe cores were used. Furthermore, using ZnS:Cu as the doping shell layer, CdSe/ZnS:Cu/ZnS and ZnSe/ZnS:Cu/ZnS nanoparticles were successfully synthesized, and Cu-related PL was clearly observed. These results indicate that the core/shell/shell QD structure with doping in the shell layer is a versatile method for synthesizing doped QDs.

9.
Chem Sci ; 12(30): 10354-10361, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34377421

RESUMO

The geometry in self-assembled superlattices of colloidal quantum dots (QDs) strongly affects their optoelectronic properties and is thus of critical importance for applications in optoelectronic devices. Here, we achieve the selective control of the geometry of colloidal quasi-spherical PbS QDs in highly-ordered two and three dimensional superlattices: Disordered, simple cubic (sc), and face-centered cubic (fcc). Gel permeation chromatography (GPC), not based on size-exclusion effects, is developed to quantitatively and continuously control the ligand coverage of PbS QDs. The obtained QDs can retain their high stability and photoluminescence on account of the chemically soft removal of the ligands by GPC. With increasing ligand coverage, the geometry of the self-assembled superlattices by solution-casting of the GPC-processed PbS QDs changed from disordered, sc to fcc because of the finely controlled ligand coverage and anisotropy on QD surfaces. Importantly, the highly-ordered sc supercrystal usually displays unique superfluorescence and is expected to show high charge transporting properties, but it has not yet been achieved for colloidal quasi-spherical QDs. It is firstly accessible by fine-tuning the QD ligand density using the GPC method here. This selective formation of different geometric superlattices based on GPC promises applications of such colloidal quasi-spherical QDs in high-performance optoelectronic devices.

10.
Chem Sci ; 12(42): 14004-14023, 2021 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-34760184

RESUMO

Organic photovoltaics (OPVs) have emerged as a promising next-generation technology with great potential for portable, wearable, and transparent photovoltaic applications. Over the past few decades, remarkable advances have been made in non-fullerene acceptor (NFA)-based OPVs, with their power conversion efficiency exceeding 18%, which is close to the requirements for commercial realization. Novel molecular NFA designs have emerged and evolved in the progress of understanding the physical features of NFA-based OPVs in relation to their high performance, while there is room for further improvement. In this review, the molecular design of representative NFAs is described, and their blend characteristics are assessed via statistical comparisons. Meanwhile, the current understanding of photocurrent generation is reviewed along with the significant physical features observed in high-performance NFA-based OPVs, while the challenging issues and the strategic perspectives for the commercialization of OPV technology are also discussed.

11.
ChemSusChem ; 14(17): 3475-3487, 2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34164933

RESUMO

Organic photovoltaics (OPVs) are a promising next-generation photovoltaic technology with great potential for wearable and transparent device applications. Over the past decades, remarkable advances in device efficiency close to 20 % have been made for bulk heterojunction (BHJ)-based OPV devices with long-term stability, and room for further improvements still exists. In recent years, ancillary components have been demonstrated as effective in improving the photovoltaic performance of OPVs by controlling the optoelectronic and morphological properties of BHJ blends. Herein, an updated understanding of polymer-based blend OPVs is provided, and the role and impact of ancillary components in various blend systems are categorized and discussed. Lastly, a strategic perspective on the ancillary components of blend-based OPVs for commercialization is provided.

12.
Nat Commun ; 12(1): 4532, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312394

RESUMO

Molecular organic fluorophores are currently used in organic light-emitting diodes, though non-emissive triplet excitons generated in devices incorporating conventional fluorophores limit the efficiency. This limit can be overcome in materials that have intramolecular charge-transfer excitonic states and associated small singlet-triplet energy separations; triplets can then be converted to emissive singlet excitons resulting in efficient delayed fluorescence. However, the mechanistic details of the spin interconversion have not yet been fully resolved. We report transient electron spin resonance studies that allow direct probing of the spin conversion in a series of delayed fluorescence fluorophores with varying energy gaps between local excitation and charge-transfer triplet states. The observation of distinct triplet signals, unusual in transient electron spin resonance, suggests that multiple triplet states mediate the photophysics for efficient light emission in delayed fluorescence emitters. We reveal that as the energy separation between local excitation and charge-transfer triplet states decreases, spin interconversion changes from a direct, singlet-triplet mechanism to an indirect mechanism involving intermediate states.

13.
Nat Commun ; 11(1): 3909, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32764588

RESUMO

Reverse intersystem crossing (RISC), the uphill spin-flip process from a triplet to a singlet excited state, plays a key role in a wide range of photochemical applications. Understanding and predicting the kinetics of such processes in vastly different molecular structures would facilitate the rational material design. Here, we demonstrate a theoretical expression that successfully reproduces experimental RISC rate constants ranging over five orders of magnitude in twenty different molecules. We show that the spin flip occurs across the singlet-triplet crossing seam involving a higher-lying triplet excited state where the semi-classical Marcus parabola is no longer valid. The present model explains the counterintuitive substitution effects of bromine on the RISC rate constants of previously unknown molecules, providing a predictive tool for material design.

14.
ACS Appl Mater Interfaces ; 12(46): 51756-51765, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33151064

RESUMO

A new hole-transporting material, poly-2-(9H-carbazol-9-yl)-5-(4-vinylphenyl)-5H-benzo[b]carbazole (PBCZCZ), was developed for perovskite light-emitting diodes (PeLEDs). This polymer, which is based on the benzocarbazole moiety, has good solubility in common solvents and enabled the fabrication of highly efficient multilayer perovskite devices. It has excellent film morphology and a high hole mobility of 3.67 × 10-5 cm2 V-1 s-1, which made it possible to vary the device configuration. Green and sky-blue perovskite PeLEDs using PBCZCZ as the hole-transporting layer had current efficiencies and external quantum efficiencies (EQEs) of 43.90 cd A-1 and 8.67% for the green device and 9.07 cd A-1 and 4.04% for the sky-blue device, respectively. The EQE of the green PeLEDs was about 2.5 times higher and that of the sky-blue PeLEDs was about 3 times higher than the device made with the commercial HTL of poly(9-vinylcarbazole) (PVK). The operational device lifetimes of the green and sky-blue PeLEDs made with PBCZCZ were about 4.1 and 4.8 times higher than the PVK-containing device, respectively.

15.
Nat Commun ; 11(1): 5471, 2020 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-33122641

RESUMO

In quantum dot superlattices, wherein quantum dots are periodically arranged, electronic states between adjacent quantum dots are coupled by quantum resonance, which arises from the short-range electronic coupling of wave functions, and thus the formation of minibands is expected. Quantum dot superlattices have the potential to be key materials for new optoelectronic devices, such as highly efficient solar cells and photodetectors. Herein, we report the fabrication of CdTe quantum dot superlattices via the layer-by-layer assembly of positively charged polyelectrolytes and negatively charged CdTe quantum dots. We can thus control the dimension of the quantum resonance by independently changing the distances between quantum dots in the stacking (out-of-plane) and in-plane directions. Furthermore, we experimentally verify the miniband formation by measuring the excitation energy dependence of the photoluminescence spectra and detection energy dependence of the photoluminescence excitation spectra.

16.
Chem Sci ; 10(40): 9203-9208, 2019 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-32015800

RESUMO

Intermolecular electron-hole coupling in organic semiconductor excited states plays important roles in organic light-emitting diodes and organic photovoltaics, and the distance of the coupling is typically only on the order of a few nanometers. Here, we report exceptionally long-distance coupled exciplex emissions between electron-donor and electron-acceptor molecules even with a 70 nm-thick spacer layer. Donor/spacer (∼70 nm)/acceptor-type stacked films showed a low-energy band emission, which is not ascribed to the emission of the donor, spacer, and acceptor themselves, but well corresponds to the energy difference between the highest occupied molecular orbital of the donor and the lowest unoccupied molecular orbital of the acceptor. Delayed transient photoluminescence (PL) and electroluminescence (EL) decays and PL quenching by oxygen at the low-energy band were observed and are consistent with the characteristics of the exciplex species.

17.
Org Lett ; 10(5): 833-6, 2008 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-18247630

RESUMO

A series of oligothiophenes containing difluorodioxocyclopentene-annelated thiophene units was synthesized, and their electronic properties and structures were investigated by spectroscopic and electrochemical measurements and X-ray analyses. The oligothiophenes having the terminal difluorodioxocyclopentene annelations showed n-type semiconducting behavior on FET devices, and the quaterthiophene revealed field-effect electron mobility as high as 1.3 x 10(-2) cm2 V(-1) s(-1).

18.
ACS Appl Mater Interfaces ; 10(33): 27885-27893, 2018 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-30047719

RESUMO

We report in this article the application of calcium niobate (CNO) perovskite nanosheets for electron injection layers (EILs) in organic light-emitting devices (OLEDs). Four kinds of tetraalkylammonium hydroxides having different alkyl lengths were utilized as the exfoliation agents of a layered compound precursor HCa2Nb3O10 to synthesize CNO nanosheets, including tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrapropylammonium hydroxide (TPAOH), and tetrabutylammonium hydroxide. CNO nanosheet EILs were applied in fluorescent poly[(9,9-di- n-octylfluorenyl-2,7-diyl)- alt-(benzo[2,1,3]thiadiazol-4,8-diyl)] (F8BT) organic light-emitting polymer-based devices. The effects of dispersion concentrations and alkyl chain length on the devices' performances were investigated. The results demonstrated that OLEDs' performances were related to the coverage ratio of the CNO nanosheets, their thicknesses, and their work function values. Among the four exfoliation agents, the device with CNO nanosheets exfoliated by TPAOH showed the lowest driving voltage. The OLEDs with the CNO nanosheet EILs showed lower driving voltages compared with the devices with conventional EIL material lithium 8-quinolate.

19.
Med Acupunct ; 30(4): 192-197, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30147820

RESUMO

Background: Many studies to clarify the influences of acupuncture at different acupoints of various meridians on cerebral blood flow (CBF) were conducted in the past. However, the influences of acupuncture at the points of the Governor Vessel on CBF have not yet been studied tangibly. Objective: The purpose of this study was to investigate the influences of acupuncture at individual acupoints of the Governor Vessel on cerebral hemodynamic indices. Materials and Methods: Two hundred and seventy-nine patients with chronic cerebral circulation insufficiency (CCCI) were observed, using a cerebrovascular disease diagnosis system (CVD 3000, KCC, Pyongyang, Democratic People's Republic of Korea). Various hemodynamic indices-such as vascular compliance, hemodynamic resistance, and blood flow quantity-were compared before and after acupuncture at individual acupoints of the Governor Vessel. Results: The influences of the points of Governor Vessel on CBF were different from each other, and systemic specificity of the Governor Vessel did not emerge. The largest number of indices showed significant changes when GV 16 was punctured, and the effects of GV 16, GV 20, and GV 14 on the head and the neck were relatively better than those of the points on the trunk. Conclusions: The points on the head and the neck of the Governor Vessel improve CBF biphasic regulation relatively better than the points on the trunk.

20.
Adv Mater ; 30(18): e1705915, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29532962

RESUMO

A lot of research, mostly using electron-injection layers (EILs) composed of alkali-metal compounds has been reported with a view to increase the efficiency of solution-processed organic light-emitting devices (OLEDs). However, these materials have intractable properties, such as a strong affinity for moisture, which cause the degradation of OLEDs. Consequently, optimal EIL materials should exhibit high electron-injection efficiency as well as be stable in air. In this study, polymer light-emitting devices (PLEDs) based on the commonly used yellow-fluorescence-emitting polymer F8BT, which utilize poly(diallyldimethylammonium)-based polymeric ionic liquids, are experimentally and analytically investigated. As a result, the optimized PLED employing an EIL comprising poly(diallyldimethylammonium) bis(trifluoromethanesulfonyl)imide (poly(DDA)TFSI), which is expected to display good moisture resistance because of water repellency of fluorocarbon groups, exhibits excellent storage stability in air and electroluminescence performance with a low turn-on voltage of 2.01 V, maximum external quantum efficiency of 9.00%, current efficiency of 30.1 cd A-1 , and power efficiency of 32.4 lm W-1 . The devices with poly(DDA)TFSI show one of the highest efficiencies as compared to the reported standard PLEDs. Moreover, poly(DDA)TFSI is applied as a hole-injection layer (HIL). The optimized PLED using poly(DDA)TFSI as the HIL exhibits performances comparable to those of a device that uses a conventional poly(3,4-ethylenedioxy-thiophene):poly(4-styrenesulfonate) HIL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA