RESUMO
The eye lens is responsible for focusing objects at various distances onto the retina and its refractive power is determined by its surface curvature as well as its internal gradient refractive index (GRIN). The lens continues to grow with age resulting in changes to the shape and to the GRIN profile. The present study aims to investigate how the ageing process may influence lens optical development. Murine lenses of accelerated senescence-prone strain (SAMP8) aged from 4 to 50 weeks; senescence-resistant strain (SAMR1) aged from 5 to 52 weeks as well as AKR strain (served as control) aged from 6 to 70 weeks were measured using the X-ray interferometer at the SPring-8 synchrotron Japan within three consecutive years from 2020 to 2022. Three dimensional distributions of the lens GRIN were reconstructed using the measured data and the lens shapes were determined using image segmentation in MatLab. Variations in the parameters describing the lens shape and the GRIN profile with age were compared amongst three mouse strains. With advancing age, both the lens anterior and posterior surface flattens and the lens sagittal thickness increase in all three mouse strains (Anterior radius of curvature increase at 0.008 mm/week, 0.007 mm/week and 0.002 mm/week while posterior radius of curvature increase at 0.002 mm/week, 0.007 mm/week and 0.003 mm/week respectively in AKR, SAMP8 and SAMR1 lenses). Compared with the AKR strain, the SAMP8 samples demonstrate a higher rate of increase in the posterior curvature radius (0.007 mm/week) and the thickness (0.015 mm/week), whilst the SAMR1 samples show slower increases in the anterior curvature radius (0.002 mm/week) and its thickness (0.013 mm/week). There are similar age-related trends in GRIN shape in the radial direction (in all three types of murine lenses nr2 and nr6 increase with age while nr4 decrease with age consistently) but not in the axial direction amongst three mouse strains (nz1 of AKR lens decrease while of SAMP8 and SAMR1 increase with age; nz2 of all three models increase with age; nz3 of AKR lens increase while of SAMP8 and SAMR1 decrease with age). The ageing process can influence the speed of lens shape change and affect the GRIN profile mainly in the axial direction, contributing to an accelerated decline rate of the optical power in the senescence-prone strain (3.5 D/week compared to 2.3 D/week in the AKR control model) but a retardatory decrease in the senescence-resistant strain (2.1 D/week compared to the 2.3D/week in the AKR control model).
Assuntos
Envelhecimento , Cristalino , Camundongos , Animais , JapãoRESUMO
To determine the effect of zonular forces on lens capsule topography, a finite element (FE) analyses of lens capsules with no lens stroma and constant and variable thickness with anterior capsulotomies of 1.5 mm-6.5 mm were evaluated when subjected to equatorial (Ez), anterior (Az) and posterior (Pz) zonular forces. The lens capsule was considered in the unaccommodated state when the total initial zonular force was 0.00075 N or 0.3 N. From the total 0.00075 N zonular force, the Ez force was increased in 0.000125 N steps for a maximum force of 0.03 N and simultaneously the Az plus Pz force was reduced in 0.000125 N steps to zero. In addition, the force of all the zonules was reduced from 0.00075 N and separately from 0.3 N in 0.000125 N steps to zero. Only when Ez force was increased as Az and Pz force was reduced did the capsule topography simulate in vivo observations with the posterior capsule pole bowing posteriorly. The posterior bowing was directly related to Ez force and capsulotomy size. Whether the total force of all the zonules in the unaccommodated state was 0.00075 N or 0.3 N and reduced in steps to zero, the lens capsule topography did not emulate the in vivo observations. The FE analysis demonstrated that Ez tension increases while the Az and Pz tension decreases and that all the zonules do not relax during ciliary muscle contraction.
Assuntos
Cápsula do Cristalino , Cristalino , Análise de Elementos Finitos , Cristalino/fisiologia , Cápsula do Cristalino/fisiologia , Corpo Ciliar , Músculo LisoRESUMO
BACKGROUND: Most women with breast cancer are prone to postoperative sleep disturbances (POSD). Little is known about the differences between sevoflurane and propofol combined with dexmedetomidine on POSD in the same context. We investigated the effect of intra-operative sevoflurane or propofol combined with intravenous dexmedetomidine on the incidence of POSD and postoperative sleep structures. METHODS: A monocentric, randomized-controlled, double-blind trial. Female patients undergoing radical surgery for breast cancer were randomly assigned to receive sevoflurane and placebo, sevoflurane and dexmedetomidine, propofol and placebo, or propofol and dexmedetomidine. Dexmedetomidine was administered at 1.0 µg kg-1 infusion 15 min before induction, then infused at 0.4 µg kg-1 h-1 until the surgical drain started to be placed. The primary outcome was the incidence of POSD within the postoperative first three days (defined as an Athens Insomnia Scale score ≥ 6 points on at least one day of postoperative first three days). The secondary outcome was the duration of sleep structures, collected from the Fitbit Charge 2® smart bracelet (Fitbit, Inc., San Francisco, CA, USA). RESULTS: There were 188 women analyzed with the modified intention-to-treat method. The incidences of POSD in the dexmedetomidine and placebo groups were similar (p = 0.649). In the sevoflurane sedation strategy, dexmedetomidine decreased nocturnal wakefulness on postoperative first day (p = 0.001). In the propofol sedation strategy, dexmedetomidine increased nocturnal deep sleep on postoperative first (p < 0.001) and third (p < 0.001) days. CONCLUSION: Intra-operative infusion of dexmedetomidine had no significant effect on POSD but decreased nocturnal wakefulness in the sevoflurane group and increased nocturnal deep sleep in the propofol group. TRIAL REGISTRATION: Registered at www.chictr.org.cn (ChiCTR2300070136).
Assuntos
Neoplasias da Mama , Dexmedetomidina , Hipnóticos e Sedativos , Complicações Pós-Operatórias , Propofol , Sevoflurano , Transtornos do Sono-Vigília , Humanos , Dexmedetomidina/administração & dosagem , Dexmedetomidina/efeitos adversos , Feminino , Método Duplo-Cego , Pessoa de Meia-Idade , Neoplasias da Mama/cirurgia , Propofol/administração & dosagem , Propofol/efeitos adversos , Sevoflurano/administração & dosagem , Complicações Pós-Operatórias/epidemiologia , Complicações Pós-Operatórias/prevenção & controle , Complicações Pós-Operatórias/etiologia , Hipnóticos e Sedativos/administração & dosagem , Transtornos do Sono-Vigília/etiologia , Adulto , Idoso , Infusões IntravenosasRESUMO
PURPOSE: To explore the synergistic function of the ligaments in eye, the zonular fibres, that mediate change in eye lens shape to allow for focussing over different distances. METHODS: A set of 3D Finite Element models of the anterior eye together with a custom developed pre-stress modelling approach was proposed to simulate vision for distant objects (the unaccommodated state) to vision for near objects (accommodation). One of the five zonular groups was cut off in sequence creating five models with different zonular arrangements, the contribution of each zonular group was analysed by comparing results of each specific zonular-cut model with those from the all-zonules model in terms of lens shape and zonular tensions. RESULTS: In the all-zonular model, the anterior and equatorial zonules carry the highest tensions. In the anterior zonular-cut model, the equatorial zonular tension increases while the posterior zonular tension decreases, resulting in an increase in the change in Central Optical Power (COP). In the equatorial zonular-cut model, both the anterior and posterior zonular tensions increase, causing a decreasing change in COP. The change in COP decreases only slightly in the other models. For vitreous zonular-cut models, little change was seen in either the zonular tension or the change in COP. CONCLUSIONS: The anterior and the equatorial zonular fibres have the major influence on the change in lens optical power, with the anterior zonules having a negative effect and the equatorial zonules contributing a positive effect. The contribution to variations in optical power by the equatorial zonules is much larger than by the posterior zonules.
Assuntos
Corpo Ciliar , Cristalino , Acomodação Ocular , LigamentosRESUMO
BACKGROUND: Current treatment of cataract widely used in clinics is by removal of the opacified content from the lens capsule which is followed by insertion of an artificial intraocular lens (IOL). The IOL needs to remain stabilized in the capsular bag for the eye to achieve desired optical quality. The present study aims to investigate how different design parameters of the IOL can influence the axial and rotational stabilities of IOLs using Finite Element Analysis. METHODS: Eight designs of IOL with variations in types of optics surface, types of haptics and haptic angulation were constructed using parameters obtained from an online IOL databank (IOLs.eu). Each IOL was subjected to compressional simulations both by two clamps and by a collapsed natural lens capsule with an anterior rhexis. Comparisons were made between the two scenarios on axial displacement, rotation, and distribution of stresses. RESULTS: The clamps compression method set out by ISO does not always produce the same outcome as the in-the-bag analysis. The open-loop IOLs show better axial stability while the closed-loop IOLs show better rotational stability when compressed by two clamps. Simulations of IOL in the capsular bag only demonstrate better rotational stability for closed-loop designs. CONCLUSIONS: The rotational stability of an IOL is largely dependent on its haptic design whilst the axial stability is affected by the appearance of the rhexis to the anterior capsule which has a major influence on designs with a haptic angulation.
Assuntos
Capsulorrexe , Lentes Intraoculares , Capsulorrexe/métodos , Análise de Elementos Finitos , Implante de Lente Intraocular/métodos , Desenho de Prótese , HumanosRESUMO
Early nutrition is key to promoting gut growth and education of the immune system. Although iron deficiency anemia has long been recognized as a serious iron disorder, the effects of iron supplementation on gut development are less clear. Therefore, using suckling piglets as the model for iron deficiency, we assessed the impacts of iron supplementation on hematological status, gut development, and immunity improvement. Piglets were parenterally supplied with iron dextran (FeDex, 60 mg Fe/kg) by intramuscular administration on the third day after birth and slaughtered at the age of two days, five days, 10 days, and 20 days. It was expected that iron supplementation with FeDex improved the iron status with higher levels of serum iron, ferritin, transferrin, and iron loading in the liver by regulating the interaction of hepcidin and ferroportin (FPN). FeDex supplementation increased villus length and crypt depth, attenuated the pathological status of the duodenum, and was beneficial to intestinal mucosa. FeDex also influenced the intestinal immune development by stimulating the cytokines' production of the intestine and enhancing the phagocytotic capacity of monocytes. Overall, the present study suggested that iron supplementation helped promote the development of the intestine by improving its morphology, which maintains its mucosal integrity and enhances the expression of immuno-associated factors.
Assuntos
Anemia Ferropriva/prevenção & controle , Duodeno/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Complexo Ferro-Dextran/administração & dosagem , Anemia Ferropriva/sangue , Anemia Ferropriva/imunologia , Anemia Ferropriva/fisiopatologia , Fenômenos Fisiológicos da Nutrição Animal , Animais , Animais Recém-Nascidos , Proteínas de Transporte de Cátions/metabolismo , Citocinas/imunologia , Suplementos Nutricionais , Modelos Animais de Doenças , Duodeno/crescimento & desenvolvimento , Duodeno/imunologia , Duodeno/patologia , Ferritinas/sangue , Hepcidinas/metabolismo , Injeções Intramusculares , Mucosa Intestinal/crescimento & desenvolvimento , Mucosa Intestinal/imunologia , Mucosa Intestinal/patologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Estado Nutricional , Fagocitose/efeitos dos fármacos , Sus scrofa , Fatores de Tempo , Transferrina/metabolismoRESUMO
Iron deficiency is common throughout the world and has been linked to immunity impairments. Using piglets to model human infants, we assessed the impact of systemic iron homeostasis on proinflammatory status. Artificially reared piglets were parenterally supplied with iron dextran by intramuscular administration at the age of 3 days. Relative to no iron supplementation (control), iron dextran-treated (FeDex) piglets increased hematological parameters as well as iron levels in serum and tissues from days 21 to 49. High expression of hepcidin was observed in FeDex-treated piglets, which correlated with suppressed expression of ferroportin in duodenum. Lower levels of proinflammatory cytokine (IL-6, TNF-α, IFN-γ, and IL-1ß) transcripts were detected in ileum of FeDex-treated piglets, which indicated that iron supplementation could attenuate the increase of inflammatory cytokines caused by iron deficiency. Histopathological analysis of liver and duodenum proved the less inflammatory responses after iron supplementation. Hepcidin was highly stimulated by FeDex supplementation and attenuated the inflammation of anemia, which implied that hepcidin might had antiinflammatory function and is a candidate regulator of the cross-talk between iron regulation and inflammation.