Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biomolecules ; 12(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-35053244

RESUMO

The classic surfactant proteins (SPs) A, B, C, and D were discovered in the lungs, where they contribute to host defense and regulate the alveolar surface tension during breathing. Their additional importance for brain physiology was discovered decades later. SP-G, a novel amphiphilic SP, was then identified in the lungs and is mostly linked to inflammation. In the brain, it is also present and significantly elevated after hemorrhage in premature infants and in distinct conditions affecting the cerebrospinal fluid circulation of adults. However, current knowledge on SP-G-expression is limited to ependymal cells and some neurons in the subventricular and superficial cortex. Therefore, we primarily focused on the distribution of SP-G-immunoreactivity (ir) and its spatial relationships with components of the neurovascular unit in murine forebrains. Triple fluorescence labeling elucidated SP-G-co-expressing neurons in the habenula, infundibulum, and hypothalamus. Exploring whether SP-G might play a role in Alzheimer's disease (AD), 3xTg-AD mice were investigated and displayed age-dependent hippocampal deposits of ß-amyloid and hyperphosphorylated tau separately from clustered, SP-G-containing dots with additional Reelin-ir-which was used as established marker for disease progression in this specific context. Semi-quantification of those dots, together with immunoassay-based quantification of intra- and extracellular SP-G, revealed a significant elevation in old 3xTg mice when compared to age-matched wildtype animals. This suggests a role of SP-G for the pathophysiology of AD, but a confirmation with human samples is required.


Assuntos
Doença de Alzheimer , Proteína A Associada a Surfactante Pulmonar/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Tensoativos/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo
2.
J Chem Neuroanat ; 118: 102036, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34626771

RESUMO

Surfactant protein C (SP-C) modulates cerebrospinal fluid (CSF) rheology. During ageing, its declining levels are accompanied by an increased burden of white matter lesions. Pulmonary SP-C intermediates harbouring the BRICHOS-domain prevent protein misfolding in the lungs. Thus, cerebral SP-C intermediates may counteract cerebral ß-amyloidosis, a hallmark of Alzheimer's disease (AD). However, data on the molecular neuroanatomy of SP-C and its alterations in wildtype and triple transgenic (3xTg) mice, featuring essential elements of AD-neuropathology, are lacking. Therefore, this study investigated SP-C-containing structures in murine forebrains and their spatial relationships with vascular, glial and neuronal components of the neurovascular unit. Fluorescence labelling demonstrated neuronal SP-C in the medial habenula, the indusium griseum and the hippocampus. Glial counterstaining elucidated astrocytes in the corpus callosum co-expressing SP-C and S100ß. Notably, perineuronal nets were associated with SP-C in the nucleus reticularis thalami, the lateral hypothalamus and the retrosplenial cortex. In the hippocampus of aged 3xTg mice, an increased number of dot-like depositions containing SP-C and Reelin, but devoid of BRICHOS-immunoreactivity were observed apart from AD-like lesions. Wildtype and 3xTg mice revealed an age-dependent increase of such deposits markedly pronounced in about 24-month-old 3xTg mice. SP-C levels of the intracellular and extracellular compartments in each group revealed an inverse correlation of SP-C and Reelin, with reduced SP-C and increased Reelin in an age-dependent fashion especially in 3xTg mice. Taken together, extracellular SP-C, as modulator of glymphatic clearance and potential ligand of PNs, declines in 3xTg mice, which show an accumulation of extracellular Reelin depositions during ageing.


Assuntos
Química Encefálica/fisiologia , Hipocampo/metabolismo , Rede Nervosa/metabolismo , Proteína C Associada a Surfactante Pulmonar/metabolismo , Envelhecimento/metabolismo , Animais , Astrócitos/metabolismo , Espaço Extracelular/metabolismo , Feminino , Sistema Glinfático/metabolismo , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Rede Nervosa/crescimento & desenvolvimento , Neuroglia/metabolismo , Acoplamento Neurovascular/fisiologia , Proteína Reelina/metabolismo , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo
3.
Front Physiol ; 11: 575598, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192578

RESUMO

Ischemic stroke causes cellular alterations in the "neurovascular unit" (NVU) comprising neurons, glia, and the vasculature, and affects the blood-brain barrier (BBB) with adjacent extracellular matrix (ECM). Limited data are available for the zone between the NVU and ECM that has not yet considered for neuroprotective approaches. This study describes ischemia-induced alterations for two main components of the neurovascular matrix adhesion zone (NMZ), i.e., collagen IV as basement membrane constituent and fibronectin as crucial part of the ECM, in conjunction with traditional NVU elements. For spatio-temporal characterization of these structures, multiple immunofluorescence labeling was applied to tissues affected by focal cerebral ischemia using a filament-based model in mice (4, 24, and 72 h of ischemia), a thromboembolic model in rats (24 h of ischemia), a coagulation-based model in sheep (2 weeks of ischemia), and human autoptic stroke tissue (3 weeks of ischemia). An increased fibronectin immunofluorescence signal demarcated ischemia-affected areas in mice, along with an increased collagen IV signal and BBB impairment indicated by serum albumin extravasation. Quantifications revealed a region-specific pattern with highest collagen IV and fibronectin intensities in most severely affected neocortical areas, followed by a gradual decline toward the border zone and non-affected regions. Comparing 4 and 24 h of ischemia, the subcortical fibronectin signal increased significantly over time, whereas neocortical areas displayed only a gradual increase. Qualitative analyses confirmed increased fibronectin and collagen IV signals in ischemic areas from all tissues and time points investigated. While the increased collagen IV signal was restricted to vessels, fibronectin appeared diffusely arranged in the parenchyma with focal accumulations associated to the vasculature. Integrin α5 appeared enriched in the vicinity of fibronectin and vascular elements, while most of the non-vascular NVU elements showed complementary staining patterns referring to fibronectin. This spatio-temporal characterization of ischemia-related alterations of collagen IV and fibronectin in various stroke models and human autoptic tissue shows that ischemic consequences are not limited to traditional NVU components and the ECM, but also involve the NMZ. Future research should explore more components and the pathophysiological properties of the NMZ as a possible target for novel neuroprotective approaches.

4.
Front Pediatr ; 8: 572851, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33102410

RESUMO

Introduction: Surfactant proteins (SP) have been shown to be inherent proteins of the human CNS and are altered during acute and chronic disturbances of CSF circulation. Aim of the study was to examine the changes of surfactant protein concentrations in CSF of preterm babies suffering from intraventricular hemorrhage. Patients and Methods: Consecutive CSF samples of 21 preterm infants with intraventricular hemorrhages (IVH) and posthemorrhagic hydrocephalus (PHHC) were collected at primary intervention, after 5-10 days and at time of shunt insertion ~50 days after hemorrhage. Samples were analyzed for surfactant proteins A, B, C, and G by ELISA assays and the results were compared to 35 hydrocephalus patients (HC) without hemorrhage and 6 newborn control patients. Results and Discussion: Premature patients with IVH showed a significant elevation of surfactant proteins SP-A, C, and G compared to HC and control groups: mean values for the respective groups were SP-A 4.19 vs. 1.08 vs. 0.38 ng/ml. Mean SP-C 3.63 vs. 1.47 vs. 0.48 ng/ml. Mean SP-G 3.86 vs. 0.17 vs. 0.2 ng/ml. SP-A and G concentrations were slowly falling over time without reaching normal values. SP-C levels declined faster following neurosurgical interventions and reached levels comparable to those of hydrocephalus patients without hemorrhage. Conclusion: Intraventricular hemorrhages of premature infants cause posthemorrhagic CSF flow disturbance and are associated with highly significant elevations of surfactant proteins A, C, and G independent of total CSF protein concentrations.

5.
Acta Vet Scand ; 61(1): 1, 2019 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602394

RESUMO

BACKGROUND: This case report describes a focal brain lesion in an alpaca (Vicugna pacos). Although this is a restricted study based on a single animal, neuropathological features are reported that are most likely attributed to a vascular event with either ischemic or hemorrhagic pathology. Concerning translational issues, these findings extend neurovascular unit concept to the alpacas' brain and qualify a larger panel of stroke tissue markers for further exploration of ischemic or hemorrhagic consequences beyond the usually used small animal models in stroke research. CASE PRESENTATION: A brain lesion indicative of a stroke was diagnosed in a 3-year-old female alpaca as an incidental finding during a post mortem examination. The rostral portion of the right frontal lobe contained a 1.0 × 1.5 × 1.7 cm lesion that extended immediately to the overlying leptomeninges. Microscopically, it was composed of liquefactive necrosis with cholesterol crystal deposition and associated granulomatous inflammation as well as vascularized fibrous connective tissue rimmed by proliferated astrocytes. Multiple fluorescence labeling of the affected brain regions revealed strong microgliosis as shown by immunostaining of the ionized calcium binding adapter molecule 1 and astrogliosis as demonstrated by enhanced immunoreactivity for glial fibrillary acidic protein. In parallel, a drastic neuronal loss was detected by considerably diminished immunolabeling of neuronal nuclei. Concomitantly, up-regulated immunoreactivities for collagen IV and neurofilament light chains were found in the affected tissues, indicating vascular and cytoskeletal reactions. CONCLUSIONS: Driven by these neuropathological features, the incidental brain lesion found in this alpaca strongly suggests an ischemic or hemorrhagic etiology. However, since typical hallmarks became verifiable as previously described for other species affected by focal cerebral ischemia, the lesion is more likely related to an ischemic event. Nevertheless, as such cellular alterations might be difficult to distinguish from other brain lesions as for instance caused by inflammatory processes, adjuvant observations and species-related features need to be considered for etiological interpretations. Indeed, the lack of neurological deficits is likely attributed to the location of the lesion within the rostral aspect of the right frontal lobe of the alpacas' brain. Further, fibroblast migration from the meninges likely caused the intralesional scar formation.


Assuntos
Camelídeos Americanos , Acidente Vascular Cerebral/veterinária , Animais , Encéfalo/patologia , Isquemia Encefálica/patologia , Isquemia Encefálica/veterinária , Feminino , Lobo Frontal/patologia , Necrose , Acidente Vascular Cerebral/patologia
6.
Mol Neurobiol ; 56(11): 7863-7871, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31127529

RESUMO

Surfactant proteins (SP) are multi-systemic proteins playing crucial roles in the regulation of rheological properties of physiological fluids, host defense, and the clearance of potentially harmful metabolites. Hydrocephalus patients suffer from disturbed central nervous system (CNS) fluid homeostasis and exhibit remarkably altered SP concentrations within the cerebrospinal fluid (CSF). A connection between CSF-SPs, CSF flow, and ventricular dilatation, a morphological hallmark of hydrocephalus, has been reported previously. However, currently there are no studies investigating the link between rheologically active SPs and periventricular white matter changes caused by impaired CSF microcirculation in hydrocephalic conditions. Thus, the aim of this study was to assess their possible relationships. The present study included 47 individuals (27 healthy subjects and 20 hydrocephalus patients). CSF specimens were analyzed for concentrations of SP-A, SP-C, and SP-D by using enzyme-linked immunosorbent assays (ELISAs). Axial T2w turbo inversion recovery magnitude (TIRM) magnetic resonance imaging was employed in all cases. Using a custom-made MATLAB-based tool for quantification of magnetic resonance signal intensities in the brain, parameters related to disturbed deep white matter CSF microcirculation were estimated (TIRM signal intensity (SI)-mean, minimum, maximum, median, mode, standard deviation, and percentiles, p10th, p25th, p75th, p90th, as well as kurtosis, skewness, and entropy of the SI distribution). Subsequently, statistical analysis was performed (IBM SPSS 24™) to identify differences between hydrocephalic patients and healthy individuals and to further investigate the connections between CSF-SP changes and deep white matter signal intensities. SP-A (0.38 ± 0.23 vs. 0.76 ± 0.49 ng/ml) and SP-C (0.54 ± 0.28 vs. 1.27 ± 1.09 ng/ml) differed between healthy controls and hydrocephalus patients in a statistically significant manner. Also, corresponding quantification of white matter signal intensities revealed statistically significant differences between hydrocephalus patients and healthy individuals: SImean (370.41 ± 188.15 vs. 222.27 ± 99.86, p = 0.001), SImax (1115.30 ± 700.12 vs. 617.00 ± 459.34, p = 0.005), SImedian (321.40 ± 153.17 vs. 209.52 ± 84.86, p = 0.001), SImode (276.55 ± 125.63 vs. 197.26 ± 78.51, p = 0.011), SIstd (157.09 ± 110.07 vs. 81.71 ± 64.94, p = 0.005), SIp10 (229.10 ± 104.22 vs. 140.00 ± 63.12, p = 0.001), SIp25 (266.95 ± 122.62 vs. 175.63 ± 71.42, p = 0.002), SIp75 (428.80 ± 226.88 vs. 252.19 ± 110.91, p = 0.001), SIp90 (596.47 ± 345.61 vs. 322.06 ± 176.00, p = 0.001), skewness (1.19 ± 0.68 vs. 0.43 ± 1.19, p = 0.014), and entropy (5.36 ± 0.37 vs. 4.92 ± 0.51, p = 0.002). There were no differences regarding SP-D levels in hydrocephalus patients vs. healthy controls. In the acute hydrocephalic subgroup, correlations were as follows: SP-A showed a statistically significant correlation with SImax (r = 0.670, p = 0.024), SIstd (r = 0.697, p = 0.017), SIp90 (r = 0.621, p = 0.041), and inverse correlation with entropy (r = - 0.700, p = 0.016). SP-C correlated inversely with entropy (r = - 0.686, p = 0.020). For the chronic hydrocephalus subgroup, the following correlations were identified: SP-A correlated with kurtosis of the TIRM histogram (r = - 0.746, p = 0.021). SP-C correlated with SImean (r = - 0.688, p = 0.041), SImax (r = - 0.741, p = 0.022), SImedian (r = - 0.716, p = 0.030), SImode (r = - 0.765, p = 0.016), SIstd (r = - 0.671, p = 0.048), SIp25 (r = - 0.740, p = 0.023), SIp75 (r = - 0.672, p = 0.048), and SIp90 (r = - 0.667, p = 0.050). SP-D apparently does not play a major role in CSF fluid physiology. SP-A and SP-C are involved in different aspects of CNS fluid physiology. SP-A appears to play an essential compensatory role in acute hydrocephalus and seems less involved in chronic hydrocephalus. In contrary, SP-C profile and white matter changes are remarkably connected in CSF of chronic hydrocephalus patients. Considering the association between CSF flow phenomena, white matter changes, and SP-C profiles, the latter may especially contribute to the regulation of paravascular glymphatic physiology.


Assuntos
Sistema Glinfático/patologia , Hidrocefalia/patologia , Proteínas/metabolismo , Reologia , Tensoativos/metabolismo , Substância Branca/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Adulto Jovem
7.
Mol Neurobiol ; 56(4): 2433-2439, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30032421

RESUMO

Conventional surfactant proteins (A, B, C, and D) are important players of the innate immunity in the central nervous system and serve as effective regulators of cerebrospinal fluid rheology, probably being involved in clearance of detrimental metabolites like beta-amyloid and phospho-tau. Recently, a novel surfactant protein, SP-G, was described in kidneys and peripheral endocrine and exocrine glands. So far, its presence and possible functions in the central nervous system are unknown. Therefore, our study aimed to elucidate the presence of SP-G in the brain and its concentration in normal and pathologic samples of cerebrospinal fluid in order to gain first insight into its regulation and possible functions. A total of 121 samples of human cerebrospinal fluid (30 controls, 60 hydrocephalus patients, 7 central nervous system infections, and 24 brain hemorrhage patients) and 21 rat brains were included in our study. CSF samples were quantified using a commercially available ELISA system. Results were analyzed statistically using SPSS 22, performing Spearman Rho correlation and ANOVA with Dunnett's post hoc analysis. Rat brains were investigated via immunofluorescence to determine SP-G presence and colocalization with common markers like aquaporin-4, glial fibrillary acidic protein, platelet endothelial adhesion molecule 1, and neuronal nuclear antigen. SP-G occurs associated with brain vessels, comparable to other conventional SPs, and is present in a set of cortical neurons. SP-G is furthermore actively produced by ependymal and choroid plexus epithelium and secreted into the cerebrospinal fluid. Its concentrations are low in control subjects and patients suffering from aqueductal stenosis, higher in normal pressure hydrocephalus (p < 0.01), and highest in infections of the central nervous system and brain hemorrhage (p < 0.001). Interestingly, SP-G did correlate with total CSF protein in patients with CNS infections and hemorrhage, but not with cell count. Based on the changes in CSF levels of SP-G in hydrocephalus, brain hemorrhage, and CNS infections as well as its abundance at CSF flow-related anatomical structures closely associated with immunological barrier systems, importance for CSF rheology, brain waste clearance, and host defense is assumable. Thus, SP-G is a potential new CSF biomarker, possibly not only reflecting aspects of CNS innate immune responses, but also rheo-dynamically relevant changes of CSF composition, associated with CSF malabsorbtion. However, further studies are warranted to validate our findings and increase insight into the physiological importance of SP-G in the CNS.


Assuntos
Sistema Nervoso Central/imunologia , Proteínas Associadas a Surfactantes Pulmonares/líquido cefalorraquidiano , Proteínas Associadas a Surfactantes Pulmonares/imunologia , Animais , Biomarcadores/líquido cefalorraquidiano , Desenvolvimento Embrionário , Feminino , Humanos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA