Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(25): 42090-42098, 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38087590

RESUMO

Since its inception, digital holography has been mainly carried out using visible light but soon various other regions of the electromagnetic spectrum has been fruitfully explored. The Short Wavelength Infrared (SWIR) region, despite its interesting peculiarities and appealing applications in the imaging field, has not yet been fully investigated in Digital Holography (DH). Here we present a compact and robust SWIR DH setup and demonstrate the peculiar and remarkable advantages offered by SWIR radiation for macroscopic object investigation. In particular, we focus our attention to a specific application, previously demonstrated using Long Wavelength IR DH, that is vision through smoke and flames and demonstrate the great potential of SWIR DH in the field of fire rescue.

2.
Sci Rep ; 6: 23688, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-27032810

RESUMO

Non-destructive measurements of deformations are a quite common application of holography but due to the intrinsic limits in the interferometric technique, those are generally confined only to small targets and in controlled environment. Here we present an advanced technique, based on Mid Infrared Digital Holography (MIR DH), which works in outdoor conditions and provides remote and real-time information on the oscillation modes of large engineering structures. Thanks to the long wavelength of the laser radiation, large areas of buildings can be simultaneously mapped with sub-micrometric resolution in terms of their amplitude and frequency oscillation modes providing all the modal parameters vital for all the correct prevention strategies when the functionality and the health status of the structures have to be evaluated. The existing experimental techniques used to evaluate the fundamental modes of a structure are based either on seismometric sensors or on Ground-based Synthetic Aperture Radar (GbSAR). Such devices have both serious drawbacks, which prevent their application at a large scale or in the short term. We here demonstrate that the MIR DH based technique can fully overcome these limitations and has the potential to represent a breakthrough advance in the field of dynamic characterization of large structures.

3.
Sci Rep ; 5: 8447, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25677058

RESUMO

We report a detailed experimental study of the complex behavior of a dc low-pressure plasma discharge tube of the type commonly used in commercial illuminated signs, in a microfluidic chip recently proposed for visible analog computing, and other practical devices. Our experiments reveal a clear quasiperiodicity route to chaos, the two competing frequencies being the relaxation frequency and the plasma eigenfrequency. Based on an experimental volt-ampere characterization of the discharge, we propose a macroscopic model of the current flowing in the plasma. The model, governed by four autonomous ordinary differential equations, is used to compute stability diagrams for periodic oscillations of arbitrary period in the control parameter space of the discharge. Such diagrams show self-pulsations to emerge remarkably organized into intricate mosaics of stability phases with extended regions of multistability (overlap). Specific mosaics are predicted for the four dynamical variables of the discharge. Their experimental observation is an open challenge.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA