Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nucleic Acids Res ; 51(9): 4341-4362, 2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-36928661

RESUMO

BRCA1 mutations are associated with increased breast and ovarian cancer risk. BRCA1-mutant tumors are high-grade, recurrent, and often become resistant to standard therapies. Herein, we performed a targeted CRISPR-Cas9 screen and identified MEPCE, a methylphosphate capping enzyme, as a synthetic lethal interactor of BRCA1. Mechanistically, we demonstrate that depletion of MEPCE in a BRCA1-deficient setting led to dysregulated RNA polymerase II (RNAPII) promoter-proximal pausing, R-loop accumulation, and replication stress, contributing to transcription-replication collisions. These collisions compromise genomic integrity resulting in loss of viability of BRCA1-deficient cells. We also extend these findings to another RNAPII-regulating factor, PAF1. This study identifies a new class of synthetic lethal partners of BRCA1 that exploit the RNAPII pausing regulation and highlight the untapped potential of transcription-replication collision-inducing factors as unique potential therapeutic targets for treating cancers associated with BRCA1 mutations.


Assuntos
Proteína BRCA1 , Replicação do DNA , Síndrome Hereditária de Câncer de Mama e Ovário , Mutação , Transcrição Gênica , Humanos , Proteína BRCA1/deficiência , Proteína BRCA1/genética , Replicação do DNA/genética , Síndrome Hereditária de Câncer de Mama e Ovário/genética , Síndrome Hereditária de Câncer de Mama e Ovário/patologia , Síndrome Hereditária de Câncer de Mama e Ovário/fisiopatologia , RNA Polimerase II/metabolismo , Transcrição Gênica/genética , Regiões Promotoras Genéticas , Metiltransferases/deficiência , Metiltransferases/genética , Estruturas R-Loop , Morte Celular
2.
Eur Respir J ; 53(6)2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31000673

RESUMO

INTRODUCTION: Lymphangioleiomyomatosis (LAM) occurs either associated with tuberous sclerosis complex (TSC) or as sporadic disease (S-LAM). Risk factors for development of S-LAM are unknown. We hypothesised that DNA sequence variants outside of TSC2/TSC1 might be associated with susceptibility for S-LAM and performed a genome-wide association study (GWAS). METHODS: Genotyped and imputed data on 5 426 936 single nucleotide polymorphisms (SNPs) in 426 S-LAM subjects were compared, using conditional logistic regression, with similar data from 852 females from COPDGene in a matched case-control design. For replication studies, genotypes for 196 non-Hispanic White female S-LAM subjects were compared with three different sets of controls. RNA sequencing and immunohistochemistry analyses were also performed. RESULTS: Two noncoding genotyped SNPs met genome-wide significance: rs4544201 and rs2006950 (p=4.2×10-8 and 6.1×10-9, respectively), which are in the same 35 kb linkage disequilibrium block on chromosome 15q26.2. This association was replicated in an independent cohort. NR2F2 (nuclear receptor subfamily 2 group F member 2), a nuclear receptor and transcription factor, was the only nearby protein-coding gene. NR2F2 expression was higher by RNA sequencing in one abdominal LAM tumour and four kidney angiomyolipomas, a LAM-related tumour, compared with all cancers from The Cancer Genome Atlas. Immunohistochemistry showed strong nuclear expression in both LAM and angiomyolipoma tumours. CONCLUSIONS: SNPs on chromosome 15q26.2 are associated with S-LAM, and chromatin and expression data suggest that this association may occur through effects on NR2F2 expression, which potentially plays an important role in S-LAM development.


Assuntos
Fator II de Transcrição COUP/genética , Neoplasias Renais/genética , Neoplasias Pulmonares/genética , Linfangioleiomiomatose/genética , Idoso , Idoso de 80 Anos ou mais , Sequência de Bases , Estudos de Casos e Controles , Feminino , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Internacionalidade , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único
3.
Carcinogenesis ; 35(3): 578-85, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24296589

RESUMO

Dozens of common genetic variants associated with cancer risk have been identified through genome-wide association studies (GWASs). However, these variants only explain a modest fraction of the heritability of disease. The missing heritability has been attributed to several factors, among them the existence of genetic interactions (G × G). Systematic screens for G × G in model organisms have revealed their fundamental influence in complex phenotypes. In this scenario, G × G overlap significantly with other types of gene and/or protein relationships. Here, by integrating predicted G × G from GWAS data and complex- and context-defined gene coexpression profiles, we provide evidence for G × G associated with cancer risk. G × G predicted from a breast cancer GWAS dataset identified significant overlaps [relative enrichments (REs) of 8-36%, empirical P values < 0.05 to 10(-4)] with complex (non-linear) gene coexpression in breast tumors. The use of gene or protein data not specific for breast cancer did not reveal overlaps. According to the predicted G × G, experimental assays demonstrated functional interplay between lipoma-preferred partner and transforming growth factor-ß signaling in the MCF10A non-tumorigenic mammary epithelial cell model. Next, integration of pancreatic tumor gene expression profiles with pancreatic cancer G × G predicted from a GWAS corroborated the observations made for breast cancer risk (REs of 25-59%). The method presented here can potentially support the identification of genetic interactions associated with cancer risk, providing novel mechanistic hypotheses for carcinogenesis.


Assuntos
Expressão Gênica , Predisposição Genética para Doença , Neoplasias/genética , Linhagem Celular Tumoral , Estudo de Associação Genômica Ampla , Humanos , Fatores de Risco
5.
Genome Med ; 16(1): 21, 2024 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308367

RESUMO

BACKGROUND: The immune system has a central role in preventing carcinogenesis. Alteration of systemic immune cell levels may increase cancer risk. However, the extent to which common genetic variation influences blood traits and cancer risk remains largely undetermined. Here, we identify pleiotropic variants and predict their underlying molecular and cellular alterations. METHODS: Multivariate Cox regression was used to evaluate associations between blood traits and cancer diagnosis in cases in the UK Biobank. Shared genetic variants were identified from the summary statistics of the genome-wide association studies of 27 blood traits and 27 cancer types and subtypes, applying the conditional/conjunctional false-discovery rate approach. Analysis of genomic positions, expression quantitative trait loci, enhancers, regulatory marks, functionally defined gene sets, and bulk- and single-cell expression profiles predicted the biological impact of pleiotropic variants. Plasma small RNAs were sequenced to assess association with cancer diagnosis. RESULTS: The study identified 4093 common genetic variants, involving 1248 gene loci, that contributed to blood-cancer pleiotropism. Genomic hotspots of pleiotropism include chromosomal regions 5p15-TERT and 6p21-HLA. Genes whose products are involved in regulating telomere length are found to be enriched in pleiotropic variants. Pleiotropic gene candidates are frequently linked to transcriptional programs that regulate hematopoiesis and define progenitor cell states of immune system development. Perturbation of the myeloid lineage is indicated by pleiotropic associations with defined master regulators and cell alterations. Eosinophil count is inversely associated with cancer risk. A high frequency of pleiotropic associations is also centered on the regulation of small noncoding Y-RNAs. Predicted pleiotropic Y-RNAs show specific regulatory marks and are overabundant in the normal tissue and blood of cancer patients. Analysis of plasma small RNAs in women who developed breast cancer indicates there is an overabundance of Y-RNA preceding neoplasm diagnosis. CONCLUSIONS: This study reveals extensive pleiotropism between blood traits and cancer risk. Pleiotropism is linked to factors and processes involved in hematopoietic development and immune system function, including components of the major histocompatibility complexes, and regulators of telomere length and myeloid lineage. Deregulation of Y-RNAs is also associated with pleiotropism. Overexpression of these elements might indicate increased cancer risk.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias , Humanos , Feminino , Fenótipo , Locos de Características Quantitativas , Pleiotropia Genética , Neoplasias/genética , Polimorfismo de Nucleotídeo Único , Predisposição Genética para Doença
6.
BMC Med Genet ; 14: 26, 2013 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-23413917

RESUMO

BACKGROUND: Serum 25-hydroxyvitamin D3 (Vitamin D) insufficiency and single-nucleotide polymorphisms (SNPs) on its receptor, Vitamin D receptor (VDR), have been reported to be involved in melanoma susceptibility in populations mostly from northern countries. OBJECTIVE: To investigate 25-hydroxyvitamin D3 levels and VDR SNPs in melanoma patients from sunny area of Barcelona, two studies were carried out. The first study evaluated the levels of Vitamin D at time of melanoma diagnosis and the second one analyzed the association between VDR genetic variants and risk of having a high nevus number, the strongest phenotypic risk factor for melanoma. METHODS: The levels of 25-hydroxyvitamin D3 in 81 melanoma patients at diagnosis were measured. In a second group of melanoma patients, including 150 with low and 113 with high nevus number, 11 VDR SNPs were analyzed for their association with nevus number. RESULTS: In the first study, 68% of patients had insufficient levels of 25-hydroxyvitamin D3 (<25 ng/ml). Autumn-winter months and fair phototype were associated with 25-hydroxyvitamin D3 insufficiency; after multivariate analysis, season of sampling remained the only independent predictor of 25-hydroxyvitamin D3 levels. In the second study, VDR variant rs2189480 (P = 0.006) was associated with risk of high nevus number whereas rs2239179 (P = 0.044) and rs7975128 (P = 0.0005) were protective against high nevus number. After Bonferroni adjustment only rs7975128 remained significant. In stratified analysis, SNP rs7975128 was found protective against multiple melanomas (P = 0.021). CONCLUSION: This study showed that even in Barcelona, a sunny Mediterranean area, 25-hydroxyvitamin D3 levels were sub-optimal in the majority of melanoma patients at diagnosis. The involvement of VDR in nevi and, in turn, in melanoma susceptibility has also been suggested. Larger studies are needed to confirm our findings.


Assuntos
Calcifediol/deficiência , Melanoma/genética , Nevo/genética , Receptores de Calcitriol/genética , Neoplasias Cutâneas/genética , Deficiência de Vitamina D/genética , Adulto , Idoso , Calcifediol/sangue , Estudos de Coortes , Feminino , Predisposição Genética para Doença , Variação Genética , Humanos , Masculino , Melanoma/sangue , Melanoma/diagnóstico , Pessoa de Meia-Idade , Nevo/diagnóstico , Fenótipo , Polimorfismo de Nucleotídeo Único , Receptores de Calcitriol/sangue , Estudos Retrospectivos , Fatores de Risco , Estações do Ano , Neoplasias Cutâneas/sangue , Neoplasias Cutâneas/diagnóstico , Espanha , População Urbana , Vitamina D/sangue
7.
Cancer Res ; 83(24): 4015-4029, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-37987734

RESUMO

MYC is a central regulator of gene transcription and is frequently dysregulated in human cancers. As targeting MYC directly is challenging, an alternative strategy is to identify specific proteins or processes required for MYC to function as a potent cancer driver that can be targeted to result in synthetic lethality. To identify potential targets in MYC-driven cancers, we performed a genome-wide CRISPR knockout screen using an isogenic pair of breast cancer cell lines in which MYC dysregulation is the switch from benign to transformed tumor growth. Proteins that regulate R-loops were identified as a potential class of synthetic lethal targets. Dysregulated MYC elevated global transcription and coincident R-loop accumulation. Topoisomerase 1 (TOP1), a regulator of R-loops by DNA topology, was validated to be a vulnerability in cells with high MYC activity. Genetic knockdown of TOP1 in MYC-transformed cells resulted in reduced colony formation compared with control cells, demonstrating synthetic lethality. Overexpression of RNaseH1, a riboendonuclease that specifically degrades R-loops, rescued the reduction in clonogenicity induced by TOP1 deficiency, demonstrating that this vulnerability is driven by aberrant R-loop accumulation. Genetic and pharmacologic TOP1 inhibition selectively reduced the fitness of MYC-transformed tumors in vivo. Finally, drug response to TOP1 inhibitors (i.e., topotecan) significantly correlated with MYC levels and activity across panels of breast cancer cell lines and patient-derived organoids. Together, these results highlight TOP1 as a promising target for MYC-driven cancers. SIGNIFICANCE: CRISPR screening reveals topoisomerase 1 as an immediately actionable vulnerability in cancers harboring MYC as a driver oncoprotein that can be targeted with clinically approved inhibitors.


Assuntos
Neoplasias da Mama , Estruturas R-Loop , Humanos , Feminino , Mutações Sintéticas Letais , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Inibidores da Topoisomerase I/farmacologia , Linhagem Celular Tumoral
8.
NPJ Breast Cancer ; 9(1): 37, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37173335

RESUMO

We assessed the PREDICT v 2.2 for prognosis of breast cancer patients with pathogenic germline BRCA1 and BRCA2 variants, using follow-up data from 5453 BRCA1/2 carriers from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) and the Breast Cancer Association Consortium (BCAC). PREDICT for estrogen receptor (ER)-negative breast cancer had modest discrimination for BRCA1 carrier patients overall (Gönen & Heller unbiased concordance 0.65 in CIMBA, 0.64 in BCAC), but it distinguished clearly the high-mortality group from lower risk categories. In an analysis of low to high risk categories by PREDICT score percentiles, the observed mortality was consistently lower than the expected mortality, but the confidence intervals always included the calibration slope. Altogether, our results encourage the use of the PREDICT ER-negative model in management of breast cancer patients with germline BRCA1 variants. For the PREDICT ER-positive model, the discrimination was slightly lower in BRCA2 variant carriers (concordance 0.60 in CIMBA, 0.65 in BCAC). Especially, inclusion of the tumor grade distorted the prognostic estimates. The breast cancer mortality of BRCA2 carriers was underestimated at the low end of the PREDICT score distribution, whereas at the high end, the mortality was overestimated. These data suggest that BRCA2 status should also be taken into consideration with tumor characteristics, when estimating the prognosis of ER-positive breast cancer patients.

9.
Clin Cancer Res ; 28(7): 1372-1382, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35022323

RESUMO

PURPOSE: Loss of TGFß signaling increases error-prone alternative end-joining (alt-EJ) DNA repair. We previously translated this mechanistic relationship as TGFß and alt-EJ gene expression signatures, which we showed are anticorrelated across cancer types. A score representing anticorrelation, ßAlt, predicts patient outcome in response to genotoxic therapy. Here we sought to verify this biology in live specimens and additional datasets. EXPERIMENTAL DESIGN: Human head and neck squamous carcinoma (HNSC) explants were treated in vitro to test whether the signatures report TGFß signaling, indicated by SMAD2 phosphorylation, and unrepaired DNA damage, indicated by persistent 53BP1 foci after irradiation or olaparib. A custom NanoString assay was implemented to analyze the signatures' expression in explants. Each signature gene was then weighted by its association with functional responses to define a modified score, ßAltw, that was retested for association with response to genotoxic therapies in independent datasets. RESULTS: Most genes in each signature were positively correlated with the expected biological response in tumor explants. Anticorrelation of TGFß and alt-EJ signatures measured by NanoString was confirmed in explants. ßAltw was significantly (P < 0.001) better than ßAlt in predicting overall survival in response to genotoxic therapy in The Cancer Genome Atlas (TCGA) pancancer patients and in independent HNSC and ovarian cancer patient datasets. CONCLUSIONS: Association of the TGFß and alt-EJ signatures with their biological response validates TGFß competency as a key mediator of DNA repair that can be readily assayed by gene expression. The predictive value of ßAltw supports its development to assist in clinical decision making.


Assuntos
Reparo do DNA por Junção de Extremidades , Neoplasias de Cabeça e Pescoço , Quebras de DNA de Cadeia Dupla , Dano ao DNA/genética , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/genética , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Fator de Crescimento Transformador beta/genética
10.
Cancers (Basel) ; 14(2)2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35053516

RESUMO

BRCA2 is essential for homologous recombination DNA repair. BRCA2 mutations lead to genome instability and increased risk of breast and ovarian cancer. Similarly, mutations in BRCA2-interacting proteins are also known to modulate sensitivity to DNA damage agents and are established cancer risk factors. Here we identify the tumor suppressor CDK5RAP3 as a novel BRCA2 helical domain-interacting protein. CDK5RAP3 depletion induced DNA damage resistance, homologous recombination and single-strand annealing upregulation, and reduced spontaneous and DNA damage-induced genomic instability, suggesting that CDK5RAP3 negatively regulates double-strand break repair in the S-phase. Consistent with this cellular phenotype, analysis of transcriptomic data revealed an association between low CDK5RAP3 tumor expression and poor survival of breast cancer patients. Finally, we identified common genetic variations in the CDK5RAP3 locus as potentially associated with breast and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers. Our results uncover CDK5RAP3 as a critical player in DNA repair and breast cancer outcomes.

11.
ERJ Open Res ; 8(1)2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35083324

RESUMO

INTRODUCTION: Lymphangioleiomyomatosis (LAM) is a rare low-grade metastasising disease characterised by cystic lung destruction. The genetic basis of LAM remains incompletely determined, and the disease cell-of-origin is uncertain. We analysed the possibility of a shared genetic basis between LAM and cancer, and LAM and pulmonary function. METHODS: The results of genome-wide association studies of LAM, 17 cancer types and spirometry measures (forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC), FEV1/FVC ratio and peak expiratory flow (PEF)) were analysed for genetic correlations, shared genetic variants and causality. Genomic and transcriptomic data were examined, and immunodetection assays were performed to evaluate pleiotropic genes. RESULTS: There were no significant overall genetic correlations between LAM and cancer, but LAM correlated negatively with FVC and PEF, and a trend in the same direction was observed for FEV1. 22 shared genetic variants were uncovered between LAM and pulmonary function, while seven shared variants were identified between LAM and cancer. The LAM-pulmonary function shared genetics identified four pleiotropic genes previously recognised in LAM single-cell transcriptomes: ADAM12, BNC2, NR2F2 and SP5. We had previously associated NR2F2 variants with LAM, and we identified its functional partner NR3C1 as another pleotropic factor. NR3C1 expression was confirmed in LAM lung lesions. Another candidate pleiotropic factor, CNTN2, was found more abundant in plasma of LAM patients than that of healthy women. CONCLUSIONS: This study suggests the existence of a common genetic aetiology between LAM and pulmonary function.

12.
Nat Commun ; 13(1): 1895, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35393420

RESUMO

Breast cancer risk for carriers of BRCA1 pathological variants is modified by genetic factors. Genetic variation in HMMR may contribute to this effect. However, the impact of risk modifiers on cancer biology remains undetermined and the biological basis of increased risk is poorly understood. Here, we depict an interplay of molecular, cellular, and tissue microenvironment alterations that increase BRCA1-associated breast cancer risk. Analysis of genome-wide association results suggests that diverse biological processes, including links to BRCA1-HMMR profiles, influence risk. HMMR overexpression in mouse mammary epithelium increases Brca1-mutant tumorigenesis by modulating the cancer cell phenotype and tumor microenvironment. Elevated HMMR activates AURKA and reduces ARPC2 localization in the mitotic cell cortex, which is correlated with micronucleation and activation of cGAS-STING and non-canonical NF-κB signaling. The initial tumorigenic events are genomic instability, epithelial-to-mesenchymal transition, and tissue infiltration of tumor-associated macrophages. The findings reveal a biological foundation for increased risk of BRCA1-associated breast cancer.


Assuntos
Proteína BRCA1 , Neoplasias da Mama , Proteínas da Matriz Extracelular , Receptores de Hialuronatos , Complexo 2-3 de Proteínas Relacionadas à Actina/genética , Animais , Proteína BRCA1/genética , Neoplasias da Mama/patologia , Carcinogênese/genética , Proteínas da Matriz Extracelular/genética , Feminino , Estudo de Associação Genômica Ampla , Heterozigoto , Humanos , Receptores de Hialuronatos/genética , Camundongos , Microambiente Tumoral/genética
13.
Sci Transl Med ; 13(580)2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568520

RESUMO

Among the pleotropic roles of transforming growth factor-ß (TGFß) signaling in cancer, its impact on genomic stability is least understood. Inhibition of TGFß signaling increases use of alternative end joining (alt-EJ), an error-prone DNA repair process that typically functions as a "backup" pathway if double-strand break repair by homologous recombination or nonhomologous end joining is compromised. However, the consequences of this functional relationship on therapeutic vulnerability in human cancer remain unknown. Here, we show that TGFß broadly controls the DNA damage response and suppresses alt-EJ genes that are associated with genomic instability. Mechanistically based TGFß and alt-EJ gene expression signatures were anticorrelated in glioblastoma, squamous cell lung cancer, and serous ovarian cancer. Consistent with error-prone repair, more of the genome was altered in tumors classified as low TGFß and high alt-EJ, and the corresponding patients had better outcomes. Pan-cancer analysis of solid neoplasms revealed that alt-EJ genes were coordinately expressed and anticorrelated with TGFß competency in 16 of 17 cancer types tested. Moreover, regardless of cancer type, tumors classified as low TGFß and high alt-EJ were characterized by an insertion-deletion mutation signature containing short microhomologies and were more sensitive to genotoxic therapy. Collectively, experimental studies revealed that loss or inhibition of TGFß signaling compromises the DNA damage response, resulting in ineffective repair by alt-EJ. Translation of this mechanistic relationship into gene expression signatures identified a robust anticorrelation that predicts response to genotoxic therapies, thereby expanding the potential therapeutic scope of TGFß biology.


Assuntos
Reparo do DNA por Junção de Extremidades , Neoplasias , Quebras de DNA de Cadeia Dupla , Dano ao DNA , Reparo do DNA/genética , Humanos , Neoplasias/genética , Fator de Crescimento Transformador beta
14.
Nat Metab ; 3(5): 665-681, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34031589

RESUMO

Cancer metabolism adapts the metabolic network of its tissue of origin. However, breast cancer is not a disease of a single origin. Multiple epithelial populations serve as the culprit cell of origin for specific breast cancer subtypes, yet our knowledge of the metabolic network of normal mammary epithelial cells is limited. Using a multi-omic approach, here we identify the diverse metabolic programmes operating in normal mammary populations. The proteomes of basal, luminal progenitor and mature luminal cell populations revealed enrichment of glycolysis in basal cells and of oxidative phosphorylation in luminal progenitors. Single-cell transcriptomes corroborated lineage-specific metabolic identities and additional intra-lineage heterogeneity. Mitochondrial form and function differed across lineages, with clonogenicity correlating with mitochondrial activity. Targeting oxidative phosphorylation and glycolysis with inhibitors exposed lineage-rooted metabolic vulnerabilities of mammary progenitors. Bioinformatics indicated breast cancer subtypes retain metabolic features of their putative cell of origin. Thus, lineage-rooted metabolic identities of normal mammary cells may underlie breast cancer metabolic heterogeneity and targeting these vulnerabilities could advance breast cancer therapy.


Assuntos
Linhagem da Célula , Metabolismo Energético , Células Epiteliais/metabolismo , Glândulas Mamárias Humanas/metabolismo , Animais , Biomarcadores , Biologia Computacional/métodos , Feminino , Citometria de Fluxo/métodos , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Humanas/citologia , Redes e Vias Metabólicas , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteoma , Proteômica/métodos
15.
Mol Cancer Res ; 19(11): 1840-1853, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34312290

RESUMO

Lymphangioleiomyomatosis (LAM) is a rare, low-grade metastasizing disease characterized by cystic lung destruction. LAM can exhibit extensive heterogeneity at the molecular, cellular, and tissue levels. However, the molecular similarities and differences among LAM cells and tissue, and their connection to cancer features are not fully understood. By integrating complementary gene and protein LAM signatures, and single-cell and bulk tissue transcriptome profiles, we show sources of disease heterogeneity, and how they correspond to cancer molecular portraits. Subsets of LAM diseased cells differ with respect to gene expression profiles related to hormones, metabolism, proliferation, and stemness. Phenotypic diseased cell differences are identified by evaluating lumican (LUM) proteoglycan and YB1 transcription factor expression in LAM lung lesions. The RUNX1 and IRF1 transcription factors are predicted to regulate LAM cell signatures, and both regulators are expressed in LAM lung lesions, with differences between spindle-like and epithelioid LAM cells. The cancer single-cell transcriptome profiles most similar to those of LAM cells include a breast cancer mesenchymal cell model and lines derived from pleural mesotheliomas. Heterogeneity is also found in LAM lung tissue, where it is mainly determined by immune system factors. Variable expression of the multifunctional innate immunity protein LCN2 is linked to disease heterogeneity. This protein is found to be more abundant in blood plasma from LAM patients than from healthy women. IMPLICATIONS: This study identifies LAM molecular and cellular features, master regulators, cancer similarities, and potential causes of disease heterogeneity.


Assuntos
Biomarcadores Tumorais/metabolismo , Linfangioleiomiomatose/genética , Transcriptoma/genética , Feminino , Humanos
16.
J Clin Invest ; 131(3)2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33529165

RESUMO

Germline mutations in BRCA1 and BRCA2 (BRCA1/2) genes considerably increase breast and ovarian cancer risk. Given that tumors with these mutations have elevated genomic instability, they exhibit relative vulnerability to certain chemotherapies and targeted treatments based on poly (ADP-ribose) polymerase (PARP) inhibition. However, the molecular mechanisms that influence cancer risk and therapeutic benefit or resistance remain only partially understood. BRCA1 and BRCA2 have also been implicated in the suppression of R-loops, triple-stranded nucleic acid structures composed of a DNA:RNA hybrid and a displaced ssDNA strand. Here, we report that loss of RNF168, an E3 ubiquitin ligase and DNA double-strand break (DSB) responder, remarkably protected Brca1-mutant mice against mammary tumorigenesis. We demonstrate that RNF168 deficiency resulted in accumulation of R-loops in BRCA1/2-mutant breast and ovarian cancer cells, leading to DSBs, senescence, and subsequent cell death. Using interactome assays, we identified RNF168 interaction with DHX9, a helicase involved in the resolution and removal of R-loops. Mechanistically, RNF168 directly ubiquitylated DHX9 to facilitate its recruitment to R-loop-prone genomic loci. Consequently, loss of RNF168 impaired DHX9 recruitment to R-loops, thereby abrogating its ability to resolve R-loops. The data presented in this study highlight a dependence of BRCA1/2-defective tumors on factors that suppress R-loops and reveal a fundamental RNF168-mediated molecular mechanism that governs cancer development and vulnerability.


Assuntos
Proteína BRCA1/deficiência , Proteína BRCA2/deficiência , DNA de Neoplasias/metabolismo , Instabilidade Genômica , Neoplasias Mamárias Animais/metabolismo , Neoplasias Ovarianas/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , DNA de Neoplasias/genética , Feminino , Loci Gênicos , Humanos , Neoplasias Mamárias Animais/genética , Camundongos , Camundongos Knockout , Neoplasias Ovarianas/genética , Ubiquitina-Proteína Ligases/genética
17.
Oncogene ; 39(30): 5252-5266, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32561851

RESUMO

In response to genotoxic stress, multiple kinase signaling cascades are activated, many of them directed towards the tumor suppressor p53, which coordinates the DNA damage response (DDR). Defects in DDR pathways lead to an accumulation of mutations that can promote tumorigenesis. Emerging evidence implicates multiple members of the NimA-related kinase (NEK) family (NEK1, NEK10, and NEK11) in the DDR. Here, we describe a function for NEK10 in the regulation of p53 transcriptional activity through tyrosine phosphorylation. NEK10 loss increases cellular proliferation by modulating the p53-dependent transcriptional output. NEK10 directly phosphorylates p53 on Y327, revealing NEK10's unexpected substrate specificity. A p53 mutant at this site (Y327F) acts as a hypomorph, causing an attenuated p53-mediated transcriptional response. Consistently, NEK10-deficient cells display heightened sensitivity to DNA-damaging agents. Further, a combinatorial score of NEK10 and TP53-target gene expression is an independent predictor of a favorable outcome in breast cancers.


Assuntos
Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Mutação , Quinases Relacionadas a NIMA/genética , Proteína Supressora de Tumor p53/genética , Células A549 , Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Cisplatino/farmacologia , Deleção de Genes , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HCT116 , Células HEK293 , Humanos , Células MCF-7 , Quinases Relacionadas a NIMA/deficiência , Fosforilação/efeitos dos fármacos , Especificidade por Substrato , Proteína Supressora de Tumor p53/metabolismo , Tirosina/genética , Tirosina/metabolismo
18.
Cancers (Basel) ; 12(2)2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-32012804

RESUMO

The transcription factor EVI1 plays an oncogenic role in several types of neoplasms by promoting aggressive cancer features. EVI1 contributes to epigenetic regulation and transcriptional control, and its overexpression has been associated with enhanced PI3K-AKT-mTOR signaling in some settings. These observations raise the possibility that EVI1 influences the prognosis and everolimus-based therapy outcome of clear cell renal cell carcinoma (ccRCC). Here, gene expression and protein immunohistochemical studies of ccRCC show that EVI1 overexpression is associated with advanced disease features and with poorer outcome-particularly in the CC-e.3 subtype defined by The Cancer Genome Atlas. Overexpression of an oncogenic EVI1 isoform in RCC cell lines confers substantial resistance to everolimus. The EVI1 rs1344555 genetic variant is associated with poorer survival and greater progression of metastatic ccRCC patients treated with everolimus. This study leads us to propose that evaluation of EVI1 protein or gene expression, and of EVI1 genetic variants may help improve estimates of prognosis and the benefit of everolimus-based therapy in ccRCC.

19.
J Clin Med ; 9(2)2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-32012729

RESUMO

Traditionally, studies to address the characterization of mechanisms promoting tumor aggressiveness and progression have been focused only on primary tumor analyses, which could provide relevant information but have limitations to really characterize the more aggressive tumor population. To overcome these limitations, circulating tumor cells (CTCs) represent a noninvasive and valuable tool for real-time profiling of disseminated tumor cells. Therefore, the aim of the present study was to explore the value of CTC enumeration and characterization to identify markers associated with the outcome and the aggressiveness of triple-negative breast cancer (TNBC). For that aim, the CTC population from 32 patients diagnosed with TNBC was isolated and characterized. This population showed important cell plasticity in terms of expression of epithelia/mesenchymal and stemness markers, suggesting the relevance of epithelial to mesenchymal transition (EMT) intermediate phenotypes for efficient tumor dissemination. Importantly, the CTC signature demonstrated prognostic value to predict the patients' outcome and pointed to a relevant role of tissue inhibitor of metalloproteinases 1 (TIMP1) and androgen receptor (AR) for TNBC biology. Furthermore, we also analyzed the usefulness of the AR and TIMP1 blockade to target TNBC proliferation and dissemination using in vitro and in vivo zebra fish and mouse models. Overall, the molecular characterization of CTCs from advanced TNBC patients identifies highly specific biomarkers with potential applicability as noninvasive prognostic markers and reinforced the value of TIMP1 and AR as potential therapeutic targets to tackle the most aggressive breast cancer.

20.
EMBO Mol Med ; 12(6): e11217, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32400970

RESUMO

Mitochondrial metabolism and the generation of reactive oxygen species (ROS) contribute to the acquisition of DNA mutations and genomic instability in cancer. How genomic instability influences the metabolic capacity of cancer cells is nevertheless poorly understood. Here, we show that homologous recombination-defective (HRD) cancers rely on oxidative metabolism to supply NAD+ and ATP for poly(ADP-ribose) polymerase (PARP)-dependent DNA repair mechanisms. Studies in breast and ovarian cancer HRD models depict a metabolic shift that includes enhanced expression of the oxidative phosphorylation (OXPHOS) pathway and its key components and a decline in the glycolytic Warburg phenotype. Hence, HRD cells are more sensitive to metformin and NAD+ concentration changes. On the other hand, shifting from an OXPHOS to a highly glycolytic metabolism interferes with the sensitivity to PARP inhibitors (PARPi) in these HRD cells. This feature is associated with a weak response to PARP inhibition in patient-derived xenografts, emerging as a new mechanism to determine PARPi sensitivity. This study shows a mechanistic link between two major cancer hallmarks, which in turn suggests novel possibilities for specifically treating HRD cancers with OXPHOS inhibitors.


Assuntos
Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Carcinoma Epitelial do Ovário , Feminino , Recombinação Homóloga , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Estresse Oxidativo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA