Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 130(18): 186202, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37204898

RESUMO

Topological insulator-based methods underpin the topological classification of gapped bands, including those surrounding semimetallic nodal defects. However, multiple bands with gap-closing points can also possess nontrivial topology. We construct a general wave-function-based "punctured-Chern" invariant to capture such topology. To show its general applicability, we analyze two systems with disparate gapless topology: (1) a recent two-dimensional fragile topological model to capture the various band-topological transitions and (2) a three-dimensional model with a triple-point nodal defect to characterize its semimetallic topology with half integers that govern physical observables such as anomalous transport. This invariant also gives the classification for Nexus triple points (Z×Z) with certain symmetry restrictions, which is reconfirmed by abstract algebra.

2.
Phys Rev Lett ; 125(26): 267202, 2020 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-33449718

RESUMO

We report gapless quantum spin liquid behavior in the layered triangular Sr_{3}CuSb_{2}O_{9} system. X-ray diffraction shows superlattice reflections associated with atomic site ordering into triangular Cu planes well separated by Sb planes. Muon spin relaxation measurements show that the S=1/2 moments at the magnetically active Cu sites remain dynamic down to 65 mK in spite of a large antiferromagnetic exchange scale evidenced by a large Curie-Weiss temperature θ_{CW}≃-143 K as extracted from the bulk susceptibility. Specific heat measurements also show no sign of long-range order down to 0.35 K. The magnetic specific heat (C_{m}) below 5 K reveals a C_{m}=γT+αT^{2} behavior. The significant T^{2} contribution to the magnetic specific heat invites a phenomenology in terms of the so-called Dirac spinon excitations with a linear dispersion. From the low-T specific heat data, we estimate the dominant exchange scale to be ∼36 K using a Dirac spin liquid ansatz which is not far from the values inferred from microscopic density functional theory calculations (∼45 K) as well as high-temperature susceptibility analysis (∼70 K). The linear specific heat coefficient is about 18 mJ/mol K^{2} which is somewhat larger than for typical Fermi liquids.

3.
Phys Rev Lett ; 125(11): 117206, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32975979

RESUMO

We present a combination of thermodynamic and dynamic experimental signatures of a disorder driven dynamic cooperative paramagnet in a 50% site diluted triangular lattice spin-1/2 system: Y_{2}CuTiO_{6}. Magnetic ordering and spin freezing are absent down to 50 mK, far below the Curie-Weiss scale (-θ_{CW}) of ∼134 K. We observe scaling collapses of the magnetic field and temperature dependent magnetic heat capacity and magnetization data, respectively, in conformity with expectations from the random singlet physics. Our experiments establish the suppression of any freezing scale, if at all present, by more than 3 orders of magnitude, opening a plethora of interesting possibilities such as disorder stabilized long range quantum entangled ground states.

4.
Phys Rev Lett ; 117(19): 197203, 2016 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-27858437

RESUMO

We introduce a quantum Monte Carlo (QMC) method for efficient sign-problem-free simulations of a broad class of frustrated S=1/2 antiferromagnets using the basis of spin eigenstates of clusters to avoid the severe sign problem faced by other QMC methods. We demonstrate the utility of the method in several cases with competing exchange interactions and flag important limitations as well as possible extensions of the method.

5.
Phys Rev Lett ; 117(8): 086404, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27588872

RESUMO

We revisit the effect of local interactions on the quadratic band touching (QBT) of the Bernal honeycomb bilayer model using renormalization group (RG) arguments and quantum Monte Carlo (QMC) simulations. We present a RG argument which predicts, contrary to previous studies, that weak interactions do not flow to strong coupling even if the free dispersion has a QBT. Instead, they generate a linear term in the dispersion, which causes the interactions to flow back to weak coupling. Consistent with this RG scenario, in unbiased QMC simulations of the Hubbard model we find compelling evidence that antiferromagnetism turns on at a finite U/t despite the U=0 hopping problem having a QBT. The onset of antiferromagnetism takes place at a continuous transition which is consistent with (2+1)D Gross-Neveu criticality. We conclude that generically in models of bilayer graphene, even if the free dispersion has a QBT, small local interactions generate a Dirac phase with no symmetry breaking and that there is a finite-coupling transition out of this phase to a symmetry-broken state.

6.
Phys Rev Lett ; 111(8): 087203, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-24010470

RESUMO

We study a spin-1/2 SU(2) model on the honeycomb lattice with nearest-neighbor antiferromagnetic exchange J that favors Néel order and competing six-spin interactions Q that favor a valence-bond-solid (VBS) state in which the bond energies order at the "columnar" wave vector K=(2π/3,-2π/3). We present quantum Monte Carlo evidence for a direct continuous quantum phase transition between Néel and VBS states, with exponents and logarithmic violations of scaling consistent with those at analogous deconfined critical points on the square lattice. Although this strongly suggests a description in terms of deconfined criticality, the measured threefold anisotropy of the phase of the VBS order parameter shows unusual near-marginal behavior at the critical point.

7.
Phys Rev Lett ; 111(15): 157201, 2013 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-24160622

RESUMO

We study the spin-1/2 quantum Heisenberg antiferromagnet on a Bethe lattice diluted to the percolation threshold. Dilution creates areas of even or odd sublattice imbalance resulting in "dangling spins" [L. Wang and A. W. Sandvik, Phys. Rev. Lett. 97, 117204 (2006); Phys. Rev. B 81, 054417 (2010)]. These collectively act as "emergent" spin-1/2 degrees of freedom and are responsible for the creation of a set of low-lying "quasidegenerate states." Using density matrix renormalization group calculations, we detect the presence and location of these emergent spins. We find an effective Hamiltonian of these emergent spins, with Heisenberg interactions that decay exponentially with the distance between them.

8.
Sci Rep ; 12(1): 6722, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468909

RESUMO

The observation of Majorana fermions as collective excitations in condensed-matter systems is an ongoing quest, and several state-of-the-art experiments have been performed in the last decade. As a potential avenue in this direction, we simulate the high-harmonic spectrum of Kitaev's superconducting chain model that hosts Majorana edge modes in its topological phase. It is well-known that this system exhibits a topological-trivial superconducting phase transition. We demonstrate that high-harmonic spectroscopy is sensitive to the phase transition in presence of open boundary conditions due to the presence or absence of these edge modes. The population dynamics of the Majorana edge modes are different from the bulk modes, which is the underlying reason for the distinct harmonic profile of both the phases. On the contrary, in presence of periodic boundary conditions with only bulk modes, high-harmonic spectroscopy becomes insensitive to the phase transition with similar harmonic profiles in both phases.

9.
Phys Rev E ; 103(4-1): 042136, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34005962

RESUMO

Using renormalization group (RG) analyses and Monte Carlo (MC) simulations, we study the fully packed dimer model on the bilayer square lattice with fugacity equal to z (1) for interlayer (intralayer) dimers, and intralayer interaction V between neighboring parallel dimers on any elementary plaquette in either layer. For a range of not-too-large z>0 and repulsive interactions 00 destroys the power-law correlations of the z=0 decoupled layers, and leads immediately to a short-range correlated state, albeit with a slow crossover for small |V|. For V_{c}

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA