RESUMO
Bovine pancreatic ribonuclease (RNase) A and S protein (enzymatically inactive proteolytic fragment of RNase A which contains RNA binding site) stimulate the activation, as evidenced by increasing DNA-cellulose binding, of highly purified rat hepatic glucocorticoid-receptor complexes. These effects are dose dependent with maximal stimulation of DNA-cellulose binding being detected at approximately 500 micrograms (50 units of RNase A/mL). RNase A and S protein do not enhance DNA-cellulose binding via their ability to interact directly with DNA or to increase nonspecific binding of receptors to cellulose. Neither S peptide (enzymatically inactive proteolytic fragment which lacks RNA binding site) nor cytochrome c, a nonspecific basic DNA binding protein, mimics these effects. RNase A and S protein do not stimulate the conformational change which is associated with activation and is reflected in a shift in the elution profile of receptor complexes from DEAE-cellulose. In contrast, these two proteins interact with previously heat-activated receptor complexes to further enhance their DNA-cellulose binding capacity and thus mimic the effects of an endogenous heat-stable cytoplasmic protein(s) which also function(s) during step 2 of in vitro activation [Schmidt, T. J., Miller-Diener, A., Webb, M. L., & Litwack, G. (1985) J. Biol. Chem. 260, 16255-16262]. Preadsorption of RNase A and S protein to an RNase affinity resin containing an inhibitory RNA analogue, or trypsin digestion of the RNA binding site within S protein, eliminates the subsequent ability of these two proteins to stimulate DNA-cellulose binding of the purified receptors.(ABSTRACT TRUNCATED AT 250 WORDS)