Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(1): 179-188, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36045500

RESUMO

Global warming is affecting the Antarctic continent in complex ways. Because Antarctic organisms are specialized to living in the cold, they are vulnerable to increasing temperatures, although quantitative analyses of this issue are currently lacking. Here we compiled a total of 184 estimates of heat tolerance belonging to 39 marine species and quantified how survival is affected concomitantly by the intensity and duration of thermal stress. Species exhibit thermal limits displaced toward colder temperatures, with contrasting strategies between arthropods and fish that exhibit low tolerance to acute heat challenges, and brachiopods, echinoderms, and molluscs that tend to be more sensitive to chronic exposure. These differences might be associated with mobility. A dynamic mortality model suggests that Antarctic organisms already encounter temperatures that might be physiologically stressful and indicate that these ecological communities are indeed vulnerable to ongoing rising temperatures.


El calentamiento global está afectando al continente antártico de formas complejas. Dado que los organismos antárticos están especializados a vivir en el frío, son vulnerables al aumento de las temperaturas, aunque en la actualidad hay carencia de análisis cuantitativos al respecto. Aquí recopilamos un total de 184 estimaciones de tolerancia al calor pertenecientes a 39 especies marinas, y cuantificamos cómo la supervivencia de estos organismos se ve afectada concomitantemente por la intensidad y la duración de un estrés térmico. Efectivamente las especies antárticas muestran límites térmicos desplazados hacia temperaturas más frías, con estrategias contrastadas entre los artrópodos y los peces que muestran una baja tolerancia a los desafíos térmicos agudos, y los braquiópodos, equinodermos y moluscos que tienden a ser más sensibles a la exposición crónica. Estas diferencias podrían estar asociadas con la movilidad. Un modelo dinámico de mortalidad sugiere que los organismos antárticos ya se enfrentan a temperaturas que podrían ser fisiológicamente estresantes e indican que estas comunidades ecológicas son realmente vulnerables al aumento continuo de las temperaturas.


Assuntos
Termotolerância , Animais , Regiões Antárticas , Aquecimento Global , Invertebrados , Temperatura
2.
Environ Pollut ; 280: 116895, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33784562

RESUMO

The growth of Artificial Light At Night (ALAN) is potentially having widespread effects on terrestrial and coastal habitats. In this study we addressed both the individual effects of ALAN, as well as its combined effect with predation risk on the behaviour of Concholepas concholepas, a fishery resource and a keystone species in the southeastern Pacific coast. We measured the influence of ALAN and predation risk on this mollusc's feeding rate, use of refuge for light and crawling out of water behaviour. These behavioural responses were studied using light intensities that mimicked levels that had been recorded in coastal habitat exposed to ALAN. Cues were from two species known to prey on C. concholepas during its early ontogeny: the crab Acanthocyclus hassleri and the seastar Heliaster helianthus. The feeding rates of C. concholepas were 3-4 times higher in darkness and in the absence of predator cues. In contrast, ALAN-exposed C. concholepas showed lower feeding activity and were more likely to be in a refuge than those exposed to control conditions. In the presence of olfactory predator cues, and regardless of light treatment, C. concholepas tended to crawl-out of the waterline. We provide evidence to support the hypothesis that exposure to either ALAN or predation risk can alter the feeding behaviour of C. concholepas. However, predator cue recognition in C. concholepas was not affected by ALAN in situations where ALAN and predator cues were both present: C. concholepas continued to forage when predation risk was low, i.e., in darkness and away from predator cues. Whilst this response means that ALAN may not lead to increased predation mortality in C. concholepas, it will reduce feeding activity in this naturally nocturnal species in the absence of dark refugia. Such results may have implications for the long-term health, productivity and sustainability of this keystone species.


Assuntos
Braquiúros , Gastrópodes , Animais , Sinais (Psicologia) , Ecossistema , Comportamento Predatório
3.
Ecohealth ; 11(2): 215-26, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24142461

RESUMO

The rapid increase in body size and abundance of most species inside Management and Exploitations Areas for Benthic Resources (MEABRs) has led to the proposal of these areas as a good complement for achieving the conservation objectives of Marine Protected Areas (MPAs). However, when evaluating MEABRs and MPAs as conservation and/or management tools, their impact upon parasite populations has rarely been considered, despite the fact that epidemiological theory suggests an increased susceptibility to parasitism under high population abundance. We evaluated the effects of MEABRs on the parasite abundance of Proctoeces lintoni and its impact on the growth of the host limpet Fissurella crassa in central Chile. Parasitic magnitude was higher inside MEABRs than in Open-Access Areas, and parasitized limpets showed a greater shell length, muscular foot biomass, and gonadosomatic index compared to non-parasitized limpets of the same age. Our results suggest that the life cycle of P. lintoni and, consequently, its trophic links have been strengthened inside MEABRs. The increased growth rate could reduce the time required to reach the minimum catch size and increase the reproductive and muscular output of the host population. Thus, parasitism should be considered in the conservation and management of economically important mollusk hosts.


Assuntos
Conservação dos Recursos Naturais/métodos , Pesqueiros/métodos , Peixes/parasitologia , Gastrópodes/parasitologia , Trematódeos/parasitologia , Análise de Variância , Animais , Chile , Ecossistema , Pesqueiros/normas , Interações Hospedeiro-Parasita , Trematódeos/patogenicidade , Infecções por Trematódeos/parasitologia , Infecções por Trematódeos/veterinária
4.
Oecologia ; 142(4): 511-20, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15619099

RESUMO

Geographic variability in the physiological attributes of widely distributed species can be a result of phenotypic plasticity or can reflect evolutionary responses to a particular habitat. In the field, we assessed thermal variability in low and high intertidal pools and the distribution of resident fish species Scartichthys viridis and transitory Girella laevifrons along this vertical intertidal gradient at three localities along the Chilean coast: Antofagasta (the northernmost and warmest habitat), Carrizal Bajo (central coast) and Las Cruces (the southernmost and coldest habitat). In the laboratory, we evaluated the thermal sensitivity of fish captured from each locality. The response to temperature was estimated as the frequency of opercular movements and as thermal selectivity in a gradient; the former being a indirect indicator of energy costs in a particular environment and the latter revealing differential occupation of habitat. Seawater temperature in intertidal pools was greatest at Antofagasta, and within each site was greatest in high intertidal pools. The two intertidal fish species showed opposite patterns of local distribution, with S. viridis primarily inhabiting the lower sectors of the intertidal zone, and G. laevifrons occupying the higher sectors of the intertidal zone. This pattern was consistent for all three localities. Locality was found to be a very important factor determining the frequency of opercular movement and thermal selectivity of both S. viridis and G. laevifrons. Our results suggest that S. viridis and G. laevifrons respond according to: (1) the thermal history of the habitat from which they came, and (2) the immediate physical conditions of their habitat. These results suggest local adaptation rather than plasticity in thermoregulatory and energetic mechanisms.


Assuntos
Ecologia , Peixes , Temperatura , Adaptação Fisiológica , Animais , Meio Ambiente , Movimento , Água do Mar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA