Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Food Microbiol ; 122(1-2): 204-10, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18177969

RESUMO

Identification of enteric viruses in outbreak-implicated bivalve shellfish is difficult because of low levels of contamination and natural inhibitors present in shellfish tissue. In this study, the acid adsorption-alkaline elution method developed in our laboratory was proposed for the detection of rotavirus from oyster samples. The acid adsorption-alkaline elution process included the following steps: acid adsorption at pH 4.8, elution with 2.9% tryptose phosphate broth containing 6% glycine, pH 9.0, two polyethylene glycol precipitations, chloroform extraction and reconcentration using speedVac centrifugation. Oyster concentrates were extracted for RNA and examined for rotavirus using reverse transcription-nested polymerase chain reaction (RT-nested PCR). A comparison of SuperScript One-Step RT-PCR system and RT followed by PCR before the nested PCR reaction showed the former detecting four-fold lower concentration of rotavirus (78.12 plaque forming units [PFU]/ml or 0.26 PFU/assay) than the latter (3.12 x 10(2) PFU/ml or 1.04 PFU/assay). In the seeding experiment, the developed acid adsorption-alkaline elution gave high sensitivity of rotavirus detection (125 PFU/g of oyster). From August 2005 to February 2006, 120 oyster samples (Crassostrea belcheri) were collected from local markets and oyster farms, concentrated, and tested for naturally occurring rotaviruses. Four oyster samples were group A rotavirus-positive. Based on phylogenetic analysis of rotavirus DNA sequences in those positive samples, the oyster samples contained the sequences associated with human rotavirus G9 (two samples), G3 (one sample), and G1 (one sample). The present study demonstrates the successful application of developed virus concentration method and RT-nested PCR for the detection of rotaviruses in naturally contaminated oyster samples. The method might be used as a tool for evaluating the presence of enteric viruses in shellfish for monitoring and control of public health.


Assuntos
Contaminação de Alimentos/análise , Ostreidae/virologia , Rotavirus/isolamento & purificação , Frutos do Mar/virologia , Adsorção , Animais , Contagem de Colônia Microbiana , Qualidade de Produtos para o Consumidor , DNA Viral/análise , Surtos de Doenças , Humanos , Concentração de Íons de Hidrogênio , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Rotavirus/classificação , Rotavirus/genética , Sensibilidade e Especificidade
2.
J Virol Methods ; 124(1-2): 117-22, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15664059

RESUMO

Water samples were concentrated by the modified adsorption-elution technique followed by speedVac reconcentration of the filter eluates. Reverse transcriptase-nested polymerase chain reaction (RT-nested PCR) was used to detect rotavirus RNA in concentrates of the water. The detection limit of the rotavirus determined by RT-nested PCR alone was about 1.67 plaque forming units (PFU) per RT-PCR assay and that by RT-nested PCR combined with concentration from 1l seeded tap water sample was 1.46 plaque forming units per assay. Water samples were collected from various sources, concentrated, and determined rotavirus RNA. Of 120 water samples, rotavirus RNA was detected in 20 samples (16.7%); 2/10 (20%) of the river samples, 8/30 (26.7%) of the canal samples, and 10/40 (25%) of the sewage samples but was not found in any tap water samples (0/40). Only three water samples were positive for rotavirus antigen determined using an enzyme-linked immunosorbent assay (ELISA). Alignment analysis of the sequenced PCR product (346-bp fragment) was performed in eight rotavirus-positive samples using the rotavirus sequence deposited in the GenBank. All samples gave the correct VP7 sequence. Results of analysis showed two samples similar to human rotavirus (97-98%), five similar to rotavirus G9 sequence (94-99%), and one sample similar to animal rotavirus (97%). PCR inhibitors were not observed in any concentrated water samples. In all 20 (of 120) samples where rotaviruses were found, fecal coliforms including Escherichia coli were also found, but of the samples testing negative for rotaviruses, 76 were fecal coliforms positive and 69 were E. coli positive. The combination of the virus concentration method and RT-nested PCR described below made it possible to effectively detect rotaviruses in environmental water samples.


Assuntos
Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Rotavirus/isolamento & purificação , Microbiologia da Água , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA