Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
BMC Plant Biol ; 22(1): 40, 2022 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-35045819

RESUMO

BACKGROUND: Most plants encounter water stress at one or more different stages of their life cycle. The maintenance of genetic stability is the integral component of desiccation tolerance that defines the storage ability and long-term survival of seeds. Embryonic axes of desiccation-sensitive recalcitrant seeds of Acer pseudoplatnus L. were used to investigate the genotoxic effect of desiccation. Alkaline single-cell gel electrophoresis (comet assay) methodology was optimized and used to provide unique insights into the onset and repair of DNA strand breaks and 8-oxo-7,8-dihydroguanine (8-oxoG) formation during progressive steps of desiccation and rehydration. RESULTS: The loss of DNA integrity and impairment of damage repair were significant predictors of the viability of embryonic axes. In contrast to the comet assay, automated electrophoresis failed to detect changes in DNA integrity resulting from desiccation. Notably, no significant correlation was observed between hydroxyl radical (Ù OH) production and 8-oxoG formation, although the former is regarded to play a major role in guanine oxidation. CONCLUSIONS: The high-throughput comet assay represents a sensitive tool for monitoring discrete changes in DNA integrity and assessing the viability status in plant germplasm processed for long-term storage.


Assuntos
Acer/genética , Ensaio Cometa/métodos , Reparo do DNA , Estresse Oxidativo , Sementes/genética , Acer/química , Acer/crescimento & desenvolvimento , Soluções Tampão , Fragmentação do DNA , DNA-Formamidopirimidina Glicosilase/metabolismo , Dessecação , Guanosina/análogos & derivados , Guanosina/genética , Guanosina/metabolismo , Análise de Componente Principal , Espécies Reativas de Oxigênio/metabolismo , Reprodutibilidade dos Testes , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo
2.
Plant J ; 100(2): 237-250, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31215085

RESUMO

Methylated inositol, d-pinitol (3-O-methyl-d-chiro-inositol), is a common constituent in legumes. It is synthesized from myo-inositol in two reactions: the first reaction, catalyzed by myo-inositol-O-methyltransferase (IMT), consists of a transfer of a methyl group from S-adenosylmethionine to myo-inositol with the formation of d-ononitol, while the second reaction, catalyzed by d-ononitol epimerase (OEP), involves epimerization of d-ononitol to d-pinitol. To identify the genes involved in d-pinitol biosynthesis in a model legume Medicago truncatula, we conducted a BLAST search on its genome using soybean IMT cDNA as a query and found putative IMT (MtIMT) gene. Subsequent co-expression analysis performed on publicly available microarray data revealed two potential OEP genes: MtOEPA, encoding an aldo-keto reductase and MtOEPB, encoding a short-chain dehydrogenase. cDNAs of all three genes were cloned and expressed as recombinant proteins in E. coli. In vitro assays confirmed that putative MtIMT enzyme catalyzes methylation of myo-inositol to d-ononitol and showed that MtOEPA enzyme has NAD+ -dependent d-ononitol dehydrogenase activity, while MtOEPB enzyme has NADP+ -dependent d-pinitol dehydrogenase activity. Both enzymes are required for epimerization of d-ononitol to d-pinitol, which occurs in the presence of NAD+ and NADPH. Introduction of MtIMT, MtOEPA, and MtOEPB genes into tobacco plants resulted in production of d-ononitol and d-pinitol in transformants. As this two-step pathway of d-ononitol epimerization is coupled with a transfer of reducing equivalents from NADPH to NAD+ , we speculate that one of the functions of this pathway might be regeneration of NADP+ during drought stress.


Assuntos
Medicago truncatula/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/fisiologia , Glicosídeos/metabolismo , Medicago truncatula/enzimologia , Metiltransferases/metabolismo , NADP/metabolismo , Proteínas de Plantas/metabolismo , Nicotiana/enzimologia , Nicotiana/metabolismo
3.
Plant Cell Environ ; 39(10): 2108-22, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27083783

RESUMO

Studies in yeast and animals have revealed that histone deacetylases (HDACs) often act as components of multiprotein complexes, including chromatin remodelling complexes (CRCs). However, interactions between HDACs and CRCs in plants have yet to be demonstrated. Here, we present evidence for the interaction between Arabidopsis HD2C deacetylase and a BRM-containing SWI/SNF CRC. Moreover, we reveal a novel function of HD2C as a regulator of the heat stress response. HD2C transcript levels were strongly induced in plants subjected to heat treatment, and the expression of selected heat-responsive genes was up-regulated in heat-stressed hd2c mutant, suggesting that HD2C acts to down-regulate heat-activated genes. In keeping with the HDAC activity of HD2C, the altered expression of HD2C-regulated genes coincided in most cases with increased histone acetylation at their loci. Microarray transcriptome analysis of hd2c and brm mutants identified a subset of commonly regulated heat-responsive genes, and the effect of the brm hd2c double mutation on the expression of these genes was non-additive. Moreover, heat-treated 3-week-old hd2c, brm and brm hd2c mutants displayed similar rates of growth retardation. Taken together, our findings suggest that HD2C and BRM act in a common genetic pathway to regulate the Arabidopsis heat stress response.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Histona Desacetilases/fisiologia , Acetilação , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , Adenosina Trifosfatases/fisiologia , Arabidopsis/enzimologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Montagem e Desmontagem da Cromatina , Perfilação da Expressão Gênica , Resposta ao Choque Térmico , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Histonas/metabolismo , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/fisiologia
4.
Plant J ; 71(4): 575-86, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22458548

RESUMO

The micropylar region of endosperm in a seed, which is adjacent to the radicle tip, is called the 'endosperm cap', and is specifically activated before radicle emergence. This activation of the endosperm cap is a widespread phenomenon among species and is a prerequisite for the completion of germination. To understand the mechanisms of endosperm cap-specific gene expression in tomato seeds, GeneChip analysis was performed. The major groups of endosperm cap-enriched genes were pathogenesis-, cell wall-, and hormone-associated genes. The promoter regions of endosperm cap-enriched genes contained DNA motifs recognized by ethylene response factors (ERFs). The tomato ERF1 (TERF1) and its experimentally verified targets were enriched in the endosperm cap, suggesting an involvement of the ethylene response cascade in this process. The known endosperm cap enzyme endo-ß-mannanase is induced by gibberellin (GA), which is thought to be the major hormone inducing endosperm cap-specific genes. The mechanism of endo-ß-mannanase induction by GA was also investigated using isolated, embryoless seeds. Results suggested that GA might act indirectly on the endosperm cap. We propose that endosperm cap activation is caused by the ethylene response of this tissue, as a consequence of mechanosensing of the increase in embryonic growth potential by GA action.


Assuntos
Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Sementes/genética , Solanum lycopersicum/genética , Sequência de Bases , Parede Celular/genética , Endosperma/efeitos dos fármacos , Endosperma/genética , Germinação , Giberelinas/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Dados de Sequência Molecular , Motivos de Nucleotídeos , Análise de Sequência com Séries de Oligonucleotídeos , Regiões Promotoras Genéticas , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , beta-Manosidase/genética , beta-Manosidase/metabolismo
5.
Plant Commun ; 2(4): 100174, 2021 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-34327319

RESUMO

SWI/SNF chromatin remodelers are evolutionarily conserved multiprotein complexes that use the energy of ATP hydrolysis to change chromatin structure. A characteristic feature of SWI/SNF remodelers is the occurrence in both the catalytic ATPase subunit and some auxiliary subunits, of bromodomains, the protein motifs capable of binding acetylated histones. Here, we report that the Arabidopsis bromodomain-containing proteins BRD1, BRD2, and BRD13 are likely true SWI/SNF subunits that interact with the core SWI/SNF components SWI3C and SWP73B. Loss of function of each single BRD protein caused early flowering but had a negligible effect on other developmental pathways. By contrast, a brd triple mutation (brdx3) led to more pronounced developmental abnormalities, indicating functional redundancy among the BRD proteins. The brdx3 phenotypes, including hypersensitivity to abscisic acid and the gibberellin biosynthesis inhibitor paclobutrazol, resembled those of swi/snf mutants. Furthermore, the BRM protein level and occupancy at the direct target loci SCL3, ABI5, and SVP were reduced in the brdx3 mutant background. Finally, a brdx3 brm-3 quadruple mutant, in which SWI/SNF complexes were devoid of all constituent bromodomains, phenocopied a loss-of-function mutation in BRM. Taken together, our results demonstrate the relevance of BRDs as SWI/SNF subunits and suggest their cooperation with the bromodomain of BRM ATPase.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Montagem e Desmontagem da Cromatina , Proteínas de Ligação a DNA/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Domínios Proteicos
6.
J Plant Physiol ; 232: 74-81, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30537615

RESUMO

The expression of SlNP24 encoding osmotin was studied in germinating tomato seeds Solanum lycopersicum L. cv. Moneymaker. The results show that the accumulation of the transcripts of SlNP24 and its potential upstream regulator TERF1 encoding an ethylene response factor was induced by ethylene and methyl jasmonate in germinating tomato seeds. There was no effect of gibberellins on the expression of the genes studied. The expression of SlNP24 was localized in the micropylar region of the endosperm of tomato seeds. The promoter of tomato osmotin was active in the endosperm cells of transgenic Arabidopsis thaliana seeds, which contain reporter genes under control of SlNP24 promoter. The activity of SlNP24 promoter in A. thaliana reporter line seeds was visible when the expression of its ortholog gene in A. thaliana (AtOMS34) was observed. The mechanism of induction and a possible role of NP24 in germinating tomato seeds are discussed.


Assuntos
Ciclopentanos/metabolismo , Etilenos/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Solanum lycopersicum/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Germinação/fisiologia , Solanum lycopersicum/fisiologia , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Sementes/crescimento & desenvolvimento , Sementes/fisiologia
7.
J Plant Physiol ; 184: 37-48, 2015 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-26210320

RESUMO

Galactinol is the galactosyl donor for the biosynthesis of both the raffinose family oligosaccharides (RFOs) and galactosyl cyclitols (Gal-C). Its synthesis by galactinol synthase (GolS, EC 2.4.1.123) is the first committed step of the soluble α-D-galactosides biosynthetic pathway in orthodox seeds. The deposition of galactosides in seeds is suggested to be associated with desiccation tolerance (DT). In this work, for the first time, we cloned and characterized two Vicia hirsuta (L.) S.F. Gray galactinol synthase genes (VhGolS1, VhGolS2), analyzed galactinol synthase activity and measured the accumulation of galactosides of both sucrose and D-pinitol in relation to the acquisition of DT in developing seeds of this wild species. A developmentally induced increase of VhGolS1 expression preceded the rise of GolS activity in crude protein extract from maturing seeds, while the expression of the VhGolS2 gene remained low. GolS activity peaked just after the beginning of the maturation drying phase. The increase of GolS activity was not followed by galactinol accumulation, instead the high enzyme activity was related to high levels of galactose bound in soluble galactosides of the RFO and galactosyl pinitol series. Acquisition of DT coincided with an increase of VhGolS1 expression, high galactinol synthase activity and the accumulation of oligogalactosides in seeds. DT was positively correlated with the high content of soluble α-D-galactosides of both the RFO and galactosyl pinitol series as well as with the amount of galactose bound in these galactosides.


Assuntos
Secas , Galactosiltransferases/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Vicia/fisiologia , Sequência de Aminoácidos , Ciclitóis/metabolismo , Dessecação , Galactosídeos/metabolismo , Galactosiltransferases/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Rafinose/metabolismo , Sementes/metabolismo , Vicia/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA