RESUMO
Microbial community structure in the subtropical north-east Atlantic Ocean was compared between 2 years and variation attributed to environmental variables. Surface seawater communities were analysed by flow cytometry and fluorescence in situ hybridisation. Probes specific to Alphaproteobacteria, Cyanobacteria, Gammaproteobacteria and Bacteroidetes identified 67-100% of cells. Due to natural variation in the study region due to the occurrence of major currents and islands, data could not be pooled but were instead divided between distinct water masses. Community structure did not differ greatly around the Cape Verde Islands between sampling periods but varied substantially in the open ocean, suggesting different environmental perturbations favour specific bacterial groups. Wind speed varied significantly between years, with moderate to strong breeze in winter 2008 and gales in winter 2006 (8.9 ± 0.2 ms(-1) and 16.0 ± 0.4 ms(-1), respectively). Enhanced wind-driven turbulence was associated with domination by the SAR11 clade of Alphaproteobacteria, which were present at 2.4-fold in the abundance of Prochlorococcus (41.8 ± 1.6% cells, compared to 17.7 ± 7.1%). Conversely, the calmer conditions of 2008 seemed to favour Prochlorococcus (40.0 ± 1.2% cells). Prochlorococcus high-light adapted clade HLI were only numerous during wind-driven turbulence, whereas oligotrophic-adapted clade HLII dominated under calm conditions. Bacteroidetes were most prominent in turbulent conditions (9.5 ± 1.3% cells as opposed to 4.7 ± 0.3%), as were Synechococcus. In 2008, a considerable dust deposition event occurred in the region, which may have led to the substantial Gammaproteobacteria population (22.5 ± 4.0% cells compared to 4.6 ± 0.6% in 2006). Wind-driven turbulence may have a significant impact on microbial community structure in the surface ocean. Therefore, community change following dust storm events may be linked to associated wind in addition to dust-derived nutrients.
Assuntos
Bactérias/isolamento & purificação , Consórcios Microbianos , Água do Mar/microbiologia , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Organismos Aquáticos/classificação , Oceano Atlântico , Bactérias/genética , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Cabo Verde , Cianobactérias/genética , Cianobactérias/isolamento & purificação , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Plâncton/microbiologiaRESUMO
Dinophysis is a genus of dinoflagellates with the potential to cause diarrhoeic Shellfish Poisoning (DSP) in humans. The lipophilic toxins produced by some species of Dinophysis spp. can accumulate within shellfish flesh even at low cell abundances, and this may result in the closure of a shellfish farm if toxins exceed the recommended upper limit. Over the period 2014 to 2020 inclusive there were several toxic events along the South West coast of U.K. related to Dinophysis spp. The Food Standards Agency (FSA) monitoring programme measure Dinophysis cell abundances and toxin concentration within shellfish flesh around the coasts of England and Wales, but there are few schemes routinely measuring the environmental parameters that may be important drivers for these Harmful Algal Blooms (HABs). This study uses retrospective data from the FSA monitoring at three sites on the south Cornwall coast as well as environmental data from some novel platforms such as coastal WaveRider buoys to investigate potential drivers and explore whether either blooms or toxic events at these sites can be predicted from environmental data. Wind direction was found to be important in determining whether a bloom develops at these sites, and low air temperature in June was associated with low toxicity in the shellfish flesh. Using real time data from local platforms may help shellfish farmers predict future toxic events and minimise financial loss.
Assuntos
Dinoflagellida , Intoxicação por Frutos do Mar , Proliferação Nociva de Algas , Toxinas Marinhas , Estudos RetrospectivosRESUMO
Terrestrially-derived dissolved organic carbon (DOC) and nitrogen (DON) transported by rivers have been recognised as contributors to aquatic nutrient burdens, and can be of importance in rivers and estuaries already impacted by anthropogenic inorganic nutrient discharges. The concentration of DOC and DON and the flux of both to the estuary and ultimately the coastal zone is dependent upon many factors including rainfall, catchment land use, and biological processes. DOC and DON concentrations together with nitrate plus nitrite and ammonium concentrations were measured in the anthropogenically-impacted estuary Christchurch Harbour (UK) and at sites in the lower reaches of its two source rivers, the Hampshire Avon and the Stour, at weekly intervals for a year during which time several extreme rainfall events occurred. A series of transects along the estuary were also performed after weekly sampling was completed. DOC concentrations were correlated between both rivers and the estuary and were positively related to increases in river flow, but DON concentrations revealed a more complicated picture. Peak instantaneous fluxes of DOC and DON exceeded 60,000 kg C d-1 and 7000 kg N d-1 respectively both in the Stour and the estuary during high flow periods. The sources of both and routes by which they enter the aquatic system may account for the differences in dynamics, with flushing of superficial soils being a key source of DOC and point sources such as sewage treatment works being proposed as sources of DON. Removal processes within the estuary were also of importance for DON concentrations whilst DOC behaved more conservatively with some evidence of local production within the estuary. Estimated annual loads of DON and DOC to the coastal zone from Christchurch Harbour were 118 kg N km-2 y-1 and 2296 kg C km-2 y-1.
RESUMO
Functional drivers of phytoplankton that can potentially form harmful algal blooms (HABs) are important to understand given the increased prevalence of anthropogenic modification and pressure on coastal habitats. However, teasing these drivers apart from other influences is problematic in natural systems, while laboratory assessments often fail to replicate relevant natural conditions. One such potential bloom-forming species complex highlighted globally is Mesodinium cf. rubrum, a planktonic ciliate. This species occurs persistently in the Sundays Estuary in South Africa yet has never been observed to "bloom" (> 1,000 cell.ml-1). Modified by artificial nutrient-rich baseflow conditions, the Sundays Estuary provides a unique Southern Hemisphere case study to identify the autecological drivers of this ciliate due to artificial seasonally "controlled" abiotic environmental conditions. This study utilised a three-year monitoring dataset (899 samples) to assess the drivers of M. cf. rubrum using a generalised modelling approach. Key abiotic variables that influenced population abundance were season and salinity, with M. cf. rubrum populations peaking in summer and spring and preferring polyhaline salinity regions (>18) with pronounced water column salinity stratification, especially in warmer months. This was reflected in the diel vertical migration (DVM) behaviour of this species, demonstrating its ability to utilise the optimal daylight photosynthetic surface conditions and high-nutrient bottom waters at night. The only phytoplankton groups clearly associated with M. cf. rubrum were Raphidophyceae and Cryptophyceae. Although M. cf. rubrum reflects a niche overlap with the dominant HAB-forming phytoplankton in the estuary (the raphidophyte, Heterosigma akashiwo), its reduced competitive abilities restrict its abundance. In contrast, the mixotrophic foraging behaviour of M. cf. rubrum exerts a top-down control on cryptophyte prey abundance, yet, the limited availability of these prey resources (mean < 300 cells ml-1) seemingly inhibits the formation of red-water accumulations. Hydrodynamic variability is necessary to ensure that no single phytoplankton HAB-forming taxa outcompetes the rest. These results confirm aspects of the autecology of M. cf. rubrum related to salinity associations and DVM behaviour and contribute to a global understanding of managing HABs in estuaries.
Assuntos
Cilióforos , Estramenópilas , Estuários , Proliferação Nociva de Algas , FitoplânctonRESUMO
The macronutrients nitrate and phosphate are aquatic pollutants that arise naturally, however, in excess concentrations they can be harmful to human health and ecosystems. These pollutants are driven by river currents and show dynamics that are affected by weather patterns and extreme rainfall events. As a result, the nutrient budget in the receiving estuaries and coasts can change suddenly and seasonally, causing ecological damage to resident wildlife and fish populations. In this paper, we propose a statistical change-point model with interactions between time and river flow, to capture the macronutrient dynamics and their responses to river flow threshold behaviour. It also accounts for the nonlinear effect of water quality properties via nonparametric penalised splines. This model enables us to estimate the daily levels of riverine macronutrient fluxes and their seasonal and annual totals. In particular, we present a study of macronutrient dynamics on the Hampshire Avon River, which flows to the southern coast of the UK through the Christchurch Harbour estuary. We model daily data for more than a year during 2013-14 in which period there were multiple severe meteorological conditions leading to localised flooding. Adopting a Bayesian inference framework, we have quantified riverine macronutrient fluxes based on input river flow values. Out of sample empirical validation methods justify our approach, which captures also the dependencies of macronutrient concentrations with water body characteristics.
Assuntos
Monitoramento Ambiental/métodos , Nitratos/análise , Fosfatos/análise , Rios/química , Movimentos da Água , Poluentes Químicos da Água/análise , Teorema de Bayes , Inglaterra , Modelos BiológicosRESUMO
Managing diffuse pollution in catchments is a major issue for environmental managers planning to meet water quality standards and comply with the EU Water Framework Directive. A major source of diffuse pollution is from nitrogen, with high nitrate concentrations affecting water supplies and in-stream ecology. A dynamic, process based model of flow, nitrate and ammonium (INCA-N) has been applied to the Hampshire Avon as part of the NERC Macronutrient Cycles Programme to link upstream and downstream measurements of water chemistry. The model has been calibrated and validated against Environment Agency discharge and solute chemistry data, as well as a data set collected from a river site immediately upstream of the estuary tidal limit. Upstream measurements of denitrification at six sites have been used to evaluate nitrate removal rates in vegetated and non-vegetated conditions. Results show that sediments underlying vegetation were associated with significantly higher rates of nitrate removal than un-vegetated sediments (with an average increase of 245%). These data have been used to scale up rates of nitrate loss to the whole catchment scale and have been implemented via the model. The effects of streambed geology and macrophyte cover on catchment-scale nitrogen dynamics are explored and nutrient fluxes entering the estuary are evaluated. The model is used to test a strategy for nitrogen reduction assessed using a nitrate vulnerable zone (NVZ) methodology. It suggests that nitrate and ammonium concentrations could be reduced by 10% in 10years and much lower nitrogen level can be achieved but only over a long time period.
Assuntos
Compostos de Amônio/análise , Nitratos/análise , Movimentos da Água , Desnitrificação , Inglaterra , Monitoramento Ambiental , Modelos Teóricos , Rios , Poluentes Químicos da Água/análise , Qualidade da ÁguaRESUMO
Prorocentrum lima was isolated from the coastal Fleet lagoon, Dorset, UK in 2000 and a number of clonal cultures established. These were analyzed for okadaic acid (OA), dinophysistoxin-1 (DTX-1), DTX-2, DTX-4 and diol esters by liquid chromatography coupled to mass spectrometry. OA concentrations varied from 0.4 to 17.1pg OAcell(-1) and DTX-1 from 0.4 to 11.3pg DTX-1cell(-1); DTX-2 was not detected in these isolates. OA and DTX-1 were detected in the culture media, as a result of toxin excretion. DTX-4 and a selection of DTX-4 diol esters were identified using selected ion monitoring, although not all strains produced these compounds. Cell size and number of marginal and valve pores of each strain were observed using scanning electron microscopy. OA and DTX-1 concentrations, pigment content and changes in nitrate and phosphate concentrations in the culture media were followed during growth of one strain of P. lima in batch culture. Diarrhetic shellfish poisoning (DSP) toxins have been previously detected in shellfish cultivated in the Fleet lagoon, but in the absence of any Dinophysis sp. cells. The identification of toxic P. lima strains from the Fleet suggests that this dinoflagellate is the most probable source of occasional DSP detected in the lagoon.
Assuntos
Dinoflagellida/química , Dinoflagellida/ultraestrutura , Toxinas Marinhas/metabolismo , Ácido Okadáico/metabolismo , Pigmentos Biológicos/metabolismo , Animais , Cromatografia Líquida , Dinoflagellida/crescimento & desenvolvimento , Inglaterra , Toxinas Marinhas/isolamento & purificação , Espectrometria de Massas , Microscopia Eletrônica de Varredura , Ácido Okadáico/isolamento & purificação , Pigmentos Biológicos/isolamento & purificação , Piranos/isolamento & purificação , Piranos/metabolismo , Água do Mar , Especificidade da EspécieRESUMO
This study assessed the implication of oxidative stress in the mortality of cells of Microcystis aeruginosa Kütz. Cultures grown at 25°C were exposed to 32°C, darkness, and hydrogen peroxide (0.5 mM) for 96 h. The cellular abundance, chl a concentration and content, maximum photochemical efficiency of PSII (Fv /Fm ratio), intracellular oxidative stress (determined with dihydrorhodamine 123 [DHR]), cell mortality (revealed by SYTOX-labeling of DNA), and activation of caspase 3-like proteins were assessed every 24 h. The presence of DNA degradation in cells of M. aeruginosa was also assessed using a terminal deoxynucletidyl transferase-mediated dUTP nick end labeling (TUNEL) assay at 96 h. Transferring cultures from 25°C to 32°C was generally beneficial to the cells. The cellular abundance and chl a concentration increased, and the mortality remained low (except for a transient burst at 72 h) as did the oxidative stress. In darkness, cells did not divide, and the Fv /Fm continuously decreased with time. The slow increase in intracellular oxidative stress coincided with the activation of caspase 3-like proteins and a 15% and 17% increase in mortality and TUNEL-positive cells, respectively. Exposure to hydrogen peroxide had the most detrimental effect on cells as growth ceased and the Fv /Fm declined to near zero in less than 24 h. The 2-fold increase in oxidative stress matched the activation of caspase 3-like proteins and a 40% and 37% increase in mortality and TUNEL-positive cells, respectively. These results demonstrate the implication of oxidative stress in the stress response and mortality of M. aeruginosa.
RESUMO
The metabolic responses of indigenous dominant bacterioplankton populations to additions of dust were examined in the tropical northeast Atlantic. Subsurface seawater samples were treated with dust, added directly or indirectly as a 'leachate' after its rapid dissolution in deionized water. Samples were incubated at ambient temperature and light for up to 24 h and microbial metabolic responses were assessed by (35)S-methionine ((35)S-Met) uptake. Prochlorococcus and low nucleic acid (LNA) cells were sorted by flow cytometry to determine their group-specific responses. Sorted cells were also phylogenetically affiliated using FISH. The high-light-adapted ecotype II dominated the Prochlorococcus group and 73+/-14% of LNA prokaryotes belonged to the SAR11 clade of Alphaproteobacteria. Both Prochlorococcus and LNA cells were metabolically impaired by the addition of dust (40+/-28% and 37+/-22% decrease in (35)S-Met uptake compared with controls, respectively). However, LNA bacterioplankton showed minor positive responses to dust leachate additions (7+/-4% increase in (35)S-Met uptake), while the metabolic activity of Prochlorococcus cells decreased in the presence of dust leachate by 16+/-11%. Thus, dust dissolution in situ appears to be more deleterious to Prochlorococcus than SAR11-dominated LNA bacterioplankton and hence could initiate a compositional shift in the indigenous bacterioplankton.
Assuntos
Alphaproteobacteria/metabolismo , Poeira , Plâncton , Prochlorococcus/metabolismo , Água do Mar/microbiologia , Microbiologia do Solo , Alphaproteobacteria/classificação , Alphaproteobacteria/isolamento & purificação , Oceano Atlântico , Clima Desértico , Citometria de Fluxo , Hibridização in Situ Fluorescente , Metionina/metabolismo , Prochlorococcus/classificação , Prochlorococcus/isolamento & purificação , Coloração e Rotulagem , Radioisótopos de Enxofre/metabolismoRESUMO
We report a pronounced diel rhythm in ribulose 1,5-bisphosphate carboxylase/oxygenase (RubisCO) gene expression in a natural population of the coccolithophorid Coccolithus pelagicus sampled during a Lagrangian experiment in the Northeast Atlantic. Our observations show that there is greater heterogeneity in the temporal regulation of RubisCO expression among planktonic chromophytes than has been reported hitherto.