Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 3434-3437, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36086499

RESUMO

Textile sensors for physiological signals bear the potential of unobtrusive and continuous application in daily life. Recently, textile electrocardiography (ECG) sensors became available which are of particular interest for physical activity monitoring due to the high effect of exercise on the heart rate. In this work, we evaluate the effectiveness of a single-lead ECG signal acquired using a non-medical-grade ECG shirt for human activity recognition (HAR). Healthy volunteers (N=10) wore the shirt during four different activities (sleeping, sitting, walking, running) in an uncontrolled environment and ECG data (256 Hz, 12 Bit) was stored, manually checked, and unusable segments (e.g. no sensor contact) were removed, resulting in a total of 228 hours of recording. Signals were split in short segments of different duration (10, 30, 60s), transformed using the Short-time Fourier Transform (STFT) to a spectrogram image and fed into a state-of-the-art convolutional neural network (CNN). The best configuration results in an F'l-Score of 73% and an accuracy of 77% on the test set. Results with leave-one-subject-out cross-validation show F'l-Scores ranging from 41 % to 80%. Thus, a single-lead, wearable-generated ECG has an informative value for HAR to a certain extent. In future work, we aim at using more sensors of the smart shirt and sensor fusion.


Assuntos
Eletrocardiografia , Têxteis , Frequência Cardíaca , Atividades Humanas , Humanos , Redes Neurais de Computação
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 1735-1739, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34891622

RESUMO

Fifth-generation (5G) cellular networks promise higher data rates, lower latency, and large numbers of inter-connected devices. Thereby, 5G will provide important steps towards unlocking the full potential of the Internet of Things (IoT). In this work, we propose a lightweight IoT platform for continuous vital sign analysis. Electrocardiography (ECG) is acquired via textile sensors and continuously sent from a smartphone to an edge device using cellular networks. The edge device applies a state-of-the art deep learning model for providing a binary end-to-end classification if a myocardial infarction is at hand. Using this infrastructure, experiments with four volunteers were conducted. We compare 3rd, 4th-, and 5th-generation cellular networks (release 15) with respect to transmission latency, data corruption, and duration of machine learning inference. The best performance is achieved using 5G showing an average transmission latency of 110ms and data corruption in 0.07% of ECG samples. Deep learning inference took approximately 170ms. In conclusion, 5G cellular networks in combination with edge devices are a suitable infrastructure for continuous vital sign analysis using deep learning models. Future 5G releases will introduce multi-access edge computing (MEC) as a paradigm for bringing edge devices nearer to mobile clients. This will decrease transmission latency and eventually enable automatic emergency alerting in near real-time.


Assuntos
Eletrocardiografia , Dispositivos Eletrônicos Vestíveis , Humanos , Aprendizado de Máquina , Smartphone , Têxteis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA