Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38695647

RESUMO

Ecological risk assessments for potential pesticide impacts on species listed as threatened or endangered must ensure that decisions to grant registration or establish water quality standards will not jeopardize species or their critical habitats. Pesticides are designed to affect pest species via physiological pathways that may be shared by some nontarget species for which toxicity data are usually unavailable, creating a need for robust methods to estimate acute and chronic toxicity with minimal data. We used a unique probabilistic approach to estimate the risk of chronic effects of two organophosphate (OP) pesticides on the vernal pool fairy shrimp Branchinecta lynchi. Acute toxicity estimates were derived from Monte Carlo (MC) sampling of acute toxicity distributions developed from interspecies relationships using surrogate species. Within each MC draw, acute values were divided by an acute to chronic ratio (ACR) sampled from a distribution of ACRs for OP pesticides and invertebrates, producing a distribution of chronic effects concentrations. The estimated exposure concentrations (EECs) were sampled from distributions representing different environmental conditions. Risk was characterized using probability distributions of acute toxicity, ACRs, and EECs in a probabilistic analysis, as well as partial probabilistic variations that used only some distributions whereas some variables were used deterministically. A deterministic risk quotient (RQ) was compared with the results of probabilistic methods to compare the approaches. Risk varied across exposure scenarios and the number of variables that were handled probabilistically, increasing as the number of variables drawn from distributions increased. The magnitude of RQs was not correlated with the probability that EECs would exceed chronic thresholds, and comparison of the two approaches demonstrates the limited interpretability of RQs. Our novel probabilistic approach to estimating chronic risk with minimal data incorporates uncertainty underlying both exposure and effects assessments for listed species. Integr Environ Assess Manag 2024;00:1-13. Published 2024. This article is a U.S. Government work and is in the public domain in the USA.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38597778

RESUMO

Amphibians worldwide are threatened by habitat loss, some of which is driven by a changing climate, as well as exposure to pesticides, among other causes. The timing and duration of the larval development phase vary between species, thereby influencing the relative impacts of stochastic hydroregime conditions as well as potential aquatic pesticide exposure. We describe the stages of breeding through metamorphosis for eight amphibian species, based on optimal hydroregime conditions, and use a model of pesticide fate and exposure representative of central Florida citrus groves to simulate hydrodynamics based on observed weather data over a 54-year period. Using the Pesticide in Water Calculator and Plant Assessment Tool, we estimated daily wetland depth and pyraclostrobin exposure, with label-recommended application quantities. Species' timing and duration of larval development determined the number of years of suitable hydroregime for breeding and the likelihood of exposure to peak aquatic concentrations of pyraclostrobin. Although the timing of pesticide application determined the number of surviving larvae, density-dependent constraints of wetland hydroregime also affected larval survival across species and seasons. Further defining categorical amphibian life history types and habitat requirements supports the development of screening-level assessments by incorporating environmental stochasticity at the appropriate temporal resolution. Subsequent refinement of these screening-level risk assessment strategies to include spatially explicit landscape data along with terrestrial exposure estimates would offer additional insights into species vulnerability to pesticide exposure throughout the life cycle. Computational simulation of ecologically relevant exposure scenarios, such as these, offers a more realistic interpretation of differential agrichemical risk among species based on their phenology and habits and provides a more situation-specific risk assessment perspective for threatened species. Integr Environ Assess Manag 2024;00:1-10. Published 2024. This article is a U.S. Government work and is in the public domain in the USA.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA