Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 93(6): 3226-3232, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33448215

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy is a well-established analytical technique used to study chemicals and their transformations. However, high-field NMR spectroscopy necessitates advanced infrastructure, and even cryogen-free benchtop NMR spectrometers cannot be readily assembled from commercially available components. We demonstrate construction of a portable zero-field NMR spectrometer employing a commercially available magnetometer and investigate its applications in analytical chemistry. In particular, J-spectra of small representative biomolecules [13C]-formic acid, [1-13C]-glycine, [2,3-13C]-fumarate, and [1-13C]-d-glucose were acquired, and an approach relying on the presence of a transverse magnetic field during the detection was investigated for relaxometry purposes. We found that the water relaxation time strongly depends on the concentration of dissolved d-glucose in the range of 1-10 mM suggesting opportunities for indirect assessment of glucose concentration in aqueous solutions. Extending analytical capabilities of zero-field NMR to aqueous solutions of simple biomolecules (amino acids, sugars, and metabolites) and relaxation studies of aqueous solutions of glucose highlights the analytical potential of noninvasive and portable ZULF NMR sensors for applications outside of research laboratories.


Assuntos
Campos Magnéticos , Espectroscopia de Ressonância Magnética
2.
Front Plant Sci ; 15: 1352282, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525149

RESUMO

We report on a cross-species proton-relaxometry study in ex vivo tree leaves using nuclear magnetic resonance (NMR) at 7µT. Apart from the intrinsic interest of probing nuclear-spin relaxation in biological tissues at magnetic fields below Earth field, our setup enables comparative analysis of plant water dynamics without the use of expensive commercial spectrometers. In this work, we focus on leaves from common Eurasian evergreen and deciduous tree families: Pinaceae (pine, spruce), Taxaceae (yew), Betulaceae (hazel), Prunus (cherry), and Fagaceae (beech, oak). Using a nondestructive protocol, we measure their effective proton T 2 relaxation times as well as track the evolution of water content associated with leaf dehydration. Newly developed "gradiometric quadrature" detection and data-processing techniques are applied in order to increase the signal-to-noise ratio (SNR) of the relatively weak measured signals. We find that while measured relaxation times do not vary significantly among tree genera, they tend to increase as leaves dehydrate. Such experimental modalities may have particular relevance for future drought-stress research in ecology, agriculture, and space exploration.

3.
Commun Chem ; 6(1): 131, 2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37349558

RESUMO

Nuclear magnetic resonance (NMR) spectroscopy is a powerful analytical tool used in modern science and technology. Its novel incarnation, based on measurements of NMR signals without external magnetic fields, provides direct access to intramolecular interactions based on heteronuclear scalar J-coupling. The uniqueness of these interactions makes each zero-field NMR spectrum distinct and useful in chemical fingerprinting. However, the necessity of heteronuclear coupling often results in weak signals due to the low abundance of certain nuclei (e.g., 15N). Hyperpolarization of such compounds may solve the problem. In this work, we investigate molecules with natural isotopic abundance that are polarized using non-hydrogenative parahydrogen-induced polarization. We demonstrate that spectra of hyperpolarized naturally abundant pyridine derivatives can be observed and uniquely identified whether the same substituent is placed at a different position of the pyridine ring or different constituents are placed at the same position. To do so, we constructed an experimental system using a home-built nitrogen vapor condenser, which allows for consistent long-term measurements, crucial for identifying naturally abundant hyperpolarized molecules at a concentration level of ~1 mM. This opens avenues for future chemical detection of naturally abundant compounds using zero-field NMR.

4.
Commun Chem ; 6(1): 165, 2023 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-37542142

RESUMO

Nuclear magnetic resonance (NMR) relaxometry is an analytical method that provides information about molecular environments, even for NMR "silent" molecules (spin-0), by analyzing the properties of NMR signals versus the magnitude of the longitudinal field. Conventionally, this technique is performed at fields much higher than Earth's magnetic field, but our work focuses on NMR relaxometry at zero and ultra-low magnetic fields (ZULFs). Operating under such conditions allows us to investigate slow (bio)chemical processes occurring on a timescale from milliseconds to seconds, which coincide with spin evolution. ZULFs also minimize T2 line broadening in heterogeneous samples resulting from magnetic susceptibility. Here, we use ZULF NMR relaxometry to analyze (bio)chemical compounds containing 1H-13C, 1H-15N, and 1H-31P spin pairs. We also detected high-quality ULF NMR spectra of human whole-blood at 0.8 µT, despite a shortening of spin relaxation by blood proteomes (e.g., hemoglobin). Information on proton relaxation times of blood, a potential early biomarker of inflammation, can be acquired in under a minute using inexpensive, portable/small-size NMR spectrometers based on atomic magnetometers.

5.
J Phys Chem Lett ; 12(2): 787-792, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33411543

RESUMO

Organophosphorus compounds are a wide and diverse class of chemicals playing a crucial role in living organisms. This aspect has been often investigated using nuclear magnetic resonance (NMR), which provides information about molecular structure and function. In this paper, we report the results of theoretical and experimental studies on basic organophosphorus compounds using zero-field NMR, where spin dynamics are investigated in the absence of a magnetic field with the dominant heteronuclear J-coupling. We demonstrate that the zero-field NMR enables distinguishing the chemicals owing to their unique electronic environment even though their spin systems have the same alphabetic designation. Such information can be obtained just in a single measurement, while amplitudes and widths of observed low-field NMR resonances enable the study of processes affecting spin dynamics. An excellent agreement between simulations and measurements of the spectra, particularly in the largest frequency J-couplings range ever reported in zero-field NMR, is demonstrated.

6.
J Phys Chem Lett ; 12(43): 10671-10676, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34705470

RESUMO

Well-resolved and information-rich J-spectra are the foundation for chemical detection in zero-field NMR. However, even for relatively small molecules, spectra exhibit complexity, hindering the analysis. To address this problem, we investigate an example biomolecule with a complex J-coupling network─urea, a key metabolite in protein catabolism─and demonstrate ways of simplifying its zero-field spectra by modifying spin topology. This goal is achieved by controlling pH-dependent chemical exchange rates of 1H nuclei and varying the composition of the D2O/H2O mixture used as a solvent. Specifically, we demonstrate that by increasing the proton exchange rate in the [13C,15N2]-urea solution, the spin system simplifies, manifesting through a single narrow spectral peak. Additionally, we show that the spectra of 1H/D isotopologues of [15N2]-urea can be understood easily by analyzing isolated spin subsystems. This study paves the way for zero-field NMR detection of complex biomolecules, particularly in biofluids with a high concentration of water.


Assuntos
Ureia/química , Óxido de Deutério/química , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética , Água/química
7.
Sci Rep ; 9(1): 2537, 2019 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-30796329

RESUMO

In this article, operation of optical magnetometers detecting static (DC) and oscillating (AC) magnetic fields is studied and comparison of the devices is performed. To facilitate the comparison, the analysis is carried out in the same experimental setup, exploiting nonlinear magneto-optical rotation. In such a system, a control over static-field magnitude or oscillating-field frequency provides detection of strength of the DC or AC fields. Polarization rotation is investigated for various light intensities and AC-field amplitudes, which allows to determine optimum sensitivity to both fields. With the results, we demonstrate that under optimal conditions the AC magnetometer is about ten times more sensitive than its DC counterpart, which originates from different response of the atoms to the fields. Bandwidth of the magnetometers is also analyzed, revealing its different dependence on the light power. Particularly, we demonstrate that bandwidth of the AC magnetometer can be significantly increased without strong deterioration of the magnetometer sensitivity. This behavior, combined with the ability to tune the resonance frequency of the AC magnetometer, provide means for ultra-sensitive measurements of the AC field in a broad but spectrally-limited range, where detrimental role of static-field instability is significantly reduced.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA