Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Lasers Med Sci ; 34(5): 929-937, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30413898

RESUMO

Candida albicans is a normal flora caused fungal infections and has the ability to form biofilms. The aim of this study was to improve the antifungal effect of silver nanoparticles (AgNPs) and the light source for reducing the biofilm survival of C. albicans. AgNPs were prepared by silver nitrate (AgNO3) and trisodium citrate (Na3C6H5O7). To determine the antifungal effect of treatments on C. albicans biofilm, samples were distributed into four groups; L + P+ was treatment with laser irradiation and AgNPs; L + P- was treatment with laser irradiation only; L - P+ was treatment with AgNPs only (control positive); L - P- was no treatment with laser irradiation or AgNPs (control negative). The growth of fungi had been monitored by measuring the optical density at 405 nm with ELISA reader. The particle size of AgNPs was measured by using (particle size analyzer) and the zeta potential of AgNPs was measured by using Malvern zetasizer. The PSA test showed that the particle size of AgNPs was distributed between 7.531-5559.644 nm. The zeta potentials were found lower than - 30 mV with pH of 7, 9 or 11. The reduction percentage was analyzed by ANOVA test. The highest reduction difference was given at a lower level irradiation because irradiation with a density energy of 6.13 ± 0.002 J/cm2 resulted in the biofilm reduction of 7.07 ± 0.23% for the sample without AgNPs compared to the sample with AgNPs that increased the biofilm reduction of 64.48 ± 0.07%. The irradiation with a 450-nm light source had a significant fungicidal effect on C. albicans biofilm. The combination of light source and AgNPs provides an increase of biofilm reduction compared to the light source itself.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/fisiologia , Candida albicans/efeitos da radiação , Lasers Semicondutores , Nanopartículas Metálicas/química , Prata/farmacologia , Candida albicans/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Tamanho da Partícula
2.
Infect Dis Rep ; 12(Suppl 1): 8736, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32874465

RESUMO

Biofilms are able to cause microorganisms to be 80% more resistant to antibiotics. The extracelullar polymeric substance (EPS) in biofilm functions to protect bacteria, making it difficult for antibiotics to penetrate the biofilm layer. This study aims to determine the effectiveness of photodynamic inactivation with blue diode laser to reduce Staphylococcus aureus biofilm at various ages of biofilms. The light source is a 403 nm blue diode laser with an energy power of about 27.65±0.01 mW. The study was designed with two groups: Group C was the untreated control group with variations in age of biofilms (0; 6; 11; 17; 24; 32; 40 and 48) hours; Group T was a laser treatment group with variations in age of biofilm and energy density (4.23; 8.46; 12.70; 16.93 and 21.16) J/cm2. Biofilm reduction measurement method using ELISA test was performed to calculate OD595 value. The statistical analysis results of variance showed that there was an influence of biofilm age and irradiation energy density of laser on biofilm reduction. Optical density analysis showed the most optimum biofilm reduction happened when biofilm age is perfectly constructed (about 17 hours) and with 91% reduction. The longer biofilm age lived among those biofilms, the greater the reduction. The results of the Scanning Microscope Electron and fluorescent microscope measurement showed destruction site of the EPS biofilm and bacterial cell death. So, the activated photodynamic with 403 nm laser diode is effective to reduce the Staphylococcus aureus biofilm in the maturation phase.

3.
Int J Biomater ; 2019: 7179243, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31341479

RESUMO

The most effective treatment for spinal tuberculosis was by eliminating the tuberculosis bacteria and replacing the infected bone with the bone graft to induce the healing process. This study aims to synthesize and characterize nanohydroxyapatite-gelatin-based injectable bone substitute (IBS) with addition of streptomycin. The IBS was synthesized by mixing nanohydroxyapatite and 20 w/v% gelatin with ratio of 40:60, 45:55, 50:50, 55:45, 60:40, 65:35, 70:30, and 75:25 ratio and streptomycin addition as antibiotic agent. The mixture was added by hydroxypropyl methylcellulose as suspending agent. FTIR test showed that there was a chemical reaction occurring in the mixture, between the gelatin and streptomycin. The result of injectability test showed that the highest injectability of the IBS sample was 98.64% with the setting time between 30 minutes and four hours after injection on the HA scaffold that represents the bone cavity and coat the pore scaffold. The cytotoxicity test result showed that the IBS samples were nontoxic towards BHK-21 fibroblast cells and human hepatocyte cells since the viability cell was more than 50% with significant difference (p-value<0.05). The acidity of the IBS was stable and it was sensitive towards Staphylococcus aureus with significantly difference (p-value<0.05). The streptomycin release test showed that the streptomycin could be released from the IBS-injected bone scaffold with release of 2.5% after 4 hours. All the results mentioned showed that IBS was suitable as a candidate to be used in spinal tuberculosis case.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA