Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chemistry ; 30(16): e202304178, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38193788

RESUMO

Seven pyridine iodine(I) sulfonate complexes were prepared and isolated at low temperatures and characterized by X-ray diffraction analysis. The inherently instable pyridine iodine(I) cations are stabilized by an oxygen of sulfonate anions via the I⋅⋅⋅O halogen bond. In these complexes, the iodine atom of the pyridine iodine(I) cation acts as an electron acceptor and the sulfonate oxygen as the electron donor. These complexes are stable enough in the crystalline state, yet decompose rapidly under ambient conditions, also being unstable in solution. The (pyridine)N-I bond lengths [2.140(3)-2.197(2) Å] and the I⋅⋅⋅O halogen bonds [2.345(6)-2.227(3) Å] are analogous to (imide)N-I⋅⋅⋅O-N-pyridine uncharged halogen-bonded complexes formed from N-haloimides and pyridine N-oxides, thus confirming the existence of elusive pyridine iodine(I) cation.

2.
Chemistry ; 30(13): e202303643, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38055221

RESUMO

The coordination nature of 2-mono- and 2,6-disubstituted pyridines with electron-withdrawing halogen and electron-donating methyl groups for [N-X-N]+ (X=I, Br) complexations have been studied using 15 N NMR, X-ray crystallography, and Density Functional Theory (DFT) calculations. The 15 N NMR chemical shifts reveal iodine(I) and bromine(I) prefer to form complexes with 2-substituted pyridines and only 2,6-dimethylpyridine. The crystalline halogen(I) complexes of 2-substituted pyridines were characterized by using X-ray diffraction analysis, but 2,6-dihalopyridines were unable to form stable crystalline halogen(I) complexes due to the lower nucleophilicity of the pyridinic nitrogen. In contrast, the halogen(I) complexes of 2,6-dimethylpyridine, which has a more basic nitrogen, are characterized by X-crystallography, which complements the 15 N NMR studies. DFT calculations reveal that the bond energies for iodine(I) complexes vary between -291 and -351 kJ mol-1 and for bromine between -370 and -427 kJ mol-1 . The bond energies of halogen(I) complexes of 2-halopyridines with more nucleophilic nitrogen are 66-76 kJ mol-1 larger than those of analogous 2,6-dihalopyridines with less nucleophilic nitrogen. The experimental and DFT results show that the electronic influence of ortho-halogen substituents on pyridinic nitrogen leads to a completely different preference for the coordination bonding of halogen(I) ions, providing new insights into bonding in halogen(I) chemistry.

3.
Chemistry ; 29(69): e202302162, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37682579

RESUMO

Homoleptic [L-I-L]+ iodine(I) complexes (where L is a R3 R2 R1 N tertiary amine) were synthesized via the [L-Ag-L]+ → [L-I-L]+ cation exchange reaction. In solution, the amines form [R3 R2 R1 N-Ag-NR1 R2 R3 ]+ silver(I) complexes, which crystallize out from solution as the meso-[L-Ag-L]+ complexes, as characterized by X-ray crystallography. The subsequent [L-I-L]+ iodine(I) analogues were extremely reactive and could not be isolated in the solid state. Density functional theory (DFT) calculations were performed to study the Ag+ -N and I+ -N interaction energies in silver(I) and iodine(I) complexes, with the former ranging from -80 to -100 kJ mol-1 and latter from -260 to -279 kJ mol-1 . The X-ray crystal structures revealed Ag+ ⋅⋅⋅Cπ and Ag+ ⋅⋅⋅H-C short contacts between the silver(I) cation and flexible N-alkyl/N-aryl groups, which are the first of their kind in such precursor complexes.

4.
Chemistry ; 29(12): e202203466, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36445819

RESUMO

Mechanical forces, including compressive stresses, have a significant impact on chemical reactions. Besides the preparative opportunities, mechanochemical conditions benefit from the absence of any organic solvent, the possibility of a significant synthetic acceleration and unique reaction pathways. Together with an accurate characterization of ball-milling products, the development of a deeper mechanistic understanding of the occurring transformations at a molecular level is critical for fully grasping the potential of organic mechanosynthesis. We herein studied a bromination of a cyclic sulfoximine in a mixer mill and used solid-state nuclear magnetic resonance (NMR) spectroscopy for structural characterization of the reaction products. Magic-angle spinning (MAS) was applied for elucidating the product mixtures taken from the milling jar without introducing any further post-processing on the sample. Ex situ 13 C-detected NMR spectra of ball-milling products showed the formation of a crystalline solid phase with the regioselective bromination of the S-aryl group of the heterocycle in position 4. Completion is reached in less than 30 minutes as deduced from the NMR spectra. The bromination can also be achieved by magnetic stirring, but then, a longer reaction time is required. Mixing the solid educts in the NMR rotor allows to get in situ insights into the reaction and enables the detection of a reaction intermediate. The pressure alone induced in the rotor by MAS is not sufficient to lead to full conversion and the reaction occurs on slower time scales than in the ball mill, which is crucial for analysing mixtures taken from the milling jar by solid-state NMR. Our data suggest that on top of centrifugal forces, an efficient mixing of the starting materials is required for reaching a complete reaction.

5.
Angew Chem Int Ed Engl ; 62(34): e202307372, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37314001

RESUMO

N-X⋅⋅⋅- O-N+ halogen-bonded systems formed by 27 pyridine N-oxides (PyNOs) as halogen-bond (XB) acceptors and two N-halosuccinimides, two N-halophthalimides, and two N-halosaccharins as XB donors are studied in silico, in solution, and in the solid state. This large set of data (132 DFT optimized structures, 75 crystal structures, and 168 1 H NMR titrations) provides a unique view to structural and bonding properties. In the computational part, a simple electrostatic model (SiElMo) for predicting XB energies using only the properties of halogen donors and oxygen acceptors is developed. The SiElMo energies are in perfect accord with energies calculated from XB complexes optimized with two high-level DFT approaches. Data from in silico bond energies and single-crystal X-ray structures correlate; however, data from solution do not. The polydentate bonding characteristic of the PyNOs' oxygen atom in solution, as revealed by solid-state structures, is attributed to the lack of correlation between DFT/solid-state and solution data. XB strength is only slightly affected by the PyNO oxygen properties [(atomic charge (Q), ionization energy (Is,min ) and local negative minima (Vs,min )], as the σ-hole (Vs,max ) of the donor halogen is the key determinant leading to the sequence N-halosaccharin>N-halosuccinimide>N-halophthalimide on the XB strength.

6.
Inorg Chem ; 60(24): 18753-18763, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34719915

RESUMO

The aggregation process of a series of mono- and dinuclear gold(I) complexes containing a 4-ethynylaniline ligand and a phosphane at the second coordination position (PR3-Au-C≡CC6H4-NH2, complexes 1-5, and (diphos)(Au-C≡CC6H4-NH2)2, complexes 6-8), whose biological activity was previously studied by us, has been carefully analyzed through absorption, emission, and NMR spectroscopy, together with dynamic light scattering and small-angle X-ray scattering. These experiments allow us to retrieve information about how the compounds enter the cells. It was observed that all compounds present aggregation in fresh solutions, before biological treatment, and thus they must be entering the cells as aggregates. Inductively coupled plasma atomic emission spectrometry measurements showed that mononuclear complexes are mainly found in the cytosolic fraction; the dinuclear complexes are mainly found in a subsequent fraction composed of nuclei and cytoskeleton. Additionally, dinuclear complex 8 affects the actin aggregation to a larger extent, suggesting a cooperative effect of dinuclear compounds.


Assuntos
Citoesqueleto
7.
Chemistry ; 26(6): 1396-1405, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31737953

RESUMO

The dissociation of hierarchically formed dimeric triple lithium bridged triscatecholate titanium(IV) helicates with hydrocarbyl esters as side groups is systematically investigated in DMSO. Primary alkyl, alkenyl, alkynyl as well as benzyl esters are studied in order to minimize steric effects close to the helicate core. The 1 H NMR dimerization constants for the monomer-dimer equilibrium show some solvent dependent influence of the side chains on the dimer stability. In the dimer, the ability of the hydrocarbyl ester groups to aggregate minimizes their contacts with the solvent molecules. Due to this, most solvophobic alkyl groups show the highest dimerization tendency followed by alkenyls, alkynyls and finally benzyls. Furthermore, trends within the different groups of compounds can be observed. For example, the dimer is destabilized by internal double or triple bonds due to π-π repulsion. A strong indication for solvent supported London dispersion interaction between the ester side groups is found by observation of an even/odd alternation of dimerization constants within the series of n-alkyls, n-Ω-alkenyls or n-Ω-alkynyls. This corresponds to the interaction of the parent hydrocarbons, as documented by an even/odd melting point alternation.

8.
J Org Chem ; 85(9): 5884-5894, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32174116

RESUMO

Cethyl-2-methylresorcinarene (A), pyridine (B), and a set of 10 carboxylic acids (Cn) associate to form A·B·Cn ternary assemblies with 1:1:1 stoichiometry, representing a useful class of ternary systems where the guest mediates complex formation between the host and a third component. Although individually weak in solution, the combined strength of the multiple noncovalent interactions organizes the complexes even in a highly hydrogen-bond competing methanol solution, as explored by both experimental and computational methods. The interactions between A·B and Cn are dependent on the pKa values of carboxylic acids. The weak interactions between A and C further reinforce the interactions between A and B, demonstrating positive cooperativity. Our results reveal that the two-component system such as that formed by A and B can form the basis for the development of specific sensors for the molecular recognition of carboxylic acids.


Assuntos
Ácidos Carboxílicos , Ácidos Carboxílicos/química , Ligação de Hidrogênio
9.
J Nat Prod ; 83(9): 2641-2646, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32852949

RESUMO

The new 2,3-secoiridoids morisecoiridoic acids A (1) and B (2), the new iridoid 8-acetoxyepishanzilactone (3), and four additional known iridoids (4-7) were isolated from the leaf and stem bark methanol extracts of Morinda asteroscepa using chromatographic methods. The structure of shanzilactone (4) was revised. The purified metabolites were identified using NMR spectroscopic and mass spectrometric techniques, with the absolute configuration of 1 having been established by single-crystal X-ray diffraction analysis. The crude leaf extract (10 µg/mL) and compounds 1-3 and 5 (10 µM) showed mild antiplasmodial activities against the chloroquine-sensitive malaria parasite Plasmodium falciparum (3D7).


Assuntos
Iridoides/química , Morinda/química , Extratos Vegetais/química , Antimaláricos/farmacologia , Iridoides/farmacologia , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Estrutura Molecular , Casca de Planta/química , Extratos Vegetais/farmacologia , Folhas de Planta/química , Plasmodium falciparum/efeitos dos fármacos , Difração de Raios X
10.
Chirality ; 32(5): 619-631, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32155676

RESUMO

An enantiomerically pure (R)-2-methylpyrrolidine-based anilino squaraine crystallizes in two chiral polymorphs adopting a monoclinic C2 and an orthorhombic P21 21 21 structure, respectively. By various thin-film preparation techniques, a control of the polymorph formation is targeted. The local texture of the resulting textured thin films is connected to the corresponding optical properties. Special attention is paid to an unusual Davydov splitting, the anisotropic chiroptical response arising from preferred out-of-plane orientation of the crystallites, and the impact of the polymorph specific excitonic coupling.

11.
Molecules ; 25(4)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079253

RESUMO

The enantiomers of aromatic 4-dibenzocyclooctynol (DIBO), used for radiolabeling and subsequent conjugation of biomolecules to form radioligands for positron emission tomography (PET), were separated by kinetic resolution using lipase A from Candida antarctica (CAL-A). In optimized conditions, (R)-DIBO [(R)-1, ee 95%] and its acetylated (S)-ester [(S)-2, ee 96%] were isolated. In silico docking results explained the ability of CAL-A to differentiate the enantiomers of DIBO and to accommodate various acyl donors. Anhydrous MgCl2 was used for binding water from the reaction medium and, thus, for obtaining higher conversion by preventing hydrolysis of the product (S)-2 into the starting material. Since the presence of hydrated MgCl26H2O also allowed high conversion or effect on enantioselectivity, Mg2+ ion was suspected to interact with the enzyme. Binding site predictions indicated at least two sites of interest; one in the lid domain at the bottom of the acyl binding pocket and another at the interface of the hydrolase and flap domains, just above the active site.


Assuntos
Candida/enzimologia , Lipase/metabolismo , Tomografia por Emissão de Pósitrons , Sítios de Ligação , Biocatálise , Domínio Catalítico , Dessecação , Esterificação , Íons , Cinética , Magnésio/farmacologia , Conformação Molecular , Simulação de Acoplamento Molecular , Estereoisomerismo
12.
Angew Chem Int Ed Engl ; 59(35): 15081-15086, 2020 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-32348617

RESUMO

Photochromic systems have been used to achieve a number of engineering functions such as light energy conversion, molecular motors, pumps, actuators, and sensors. Key to practical applications is a high efficiency in the conversion of light to chemical energy, a rigid structure for the transmission of force to the environment, and directed motion during isomerization. We present a novel type of photochromic system (diindane diazocines) that converts visible light with an efficiency of 18 % to chemical energy. Quantum yields are exceptionally high with >70 % for the cis-trans isomerization and 90 % for the back-reaction and thus higher than the biochemical system rhodopsin (64 %). Two diastereomers (meso and racemate) were obtained in only two steps in high yields. Both isomers are directional switches with high conversion rates (76-99 %). No fatigue was observed after several thousands of switching cycles in both systems.

13.
Chemistry ; 25(53): 12294-12297, 2019 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-31314931

RESUMO

An enantiomerically pure diamine based on the 4,15-difunctionalized [2.2]paracyclophane scaffold and 2-formylpyridine self-assemble into an optically pure cyclic metallosupramolecular Fe4 L6 helicate upon mixing with iron(II) ions in a diastereoselective subcomponent self-assembly process. The cyclic assembly results from steric strain that prevents the formation of a smaller linear dinuclear triple-stranded helicate, and hence, leads to the larger strain-free assembly that fulfils the maximum occupancy rule. Interestingly, use of the racemic diamine also leads to a racemic mixture of the homochiral cyclic helicates as the major product in a highly diastereoselective narcissistic chiral self-sorting manner given the fact that the assembly contains ten stereogenic elements, which can in principle give rise to 149 different diastereomers. The metallosupramolecular aggregates could be characterized by NMR, UV/Vis and CD spectroscopy, mass spectrometry, and X-ray crystallography.

14.
Chemistry ; 25(13): 3257-3261, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30636021

RESUMO

Organic fluorophores, particularly stimuli-responsive molecules, are very interesting for biological and material sciences applications, but frequently limited by aggregation- and rotation-caused photoluminescence quenching. A series of easily accessible bipyridinium fluorophores, whose emission is quenched by a twisted intramolecular charge-transfer (TICT) mechanism, is reported. Encapsulation in a cucurbit[7]uril host gave a 1:1 complex exhibiting a moderate emission increase due to destabilization of the TICT state inside the apolar cucurbituril cavity. A much stronger fluorescence enhancement is observed in 2:2 complexes with the larger cucurbit[8]uril, which is caused by additional conformational restriction of rotations around the aryl/aryl bonds. Because the cucurbituril complexes are pH switchable, this system represents an efficient supramolecular ON/OFF fluorescence switch.

15.
Org Biomol Chem ; 17(29): 6980-6984, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31276147

RESUMO

Pyridinearene macrocycles have previously shown unique host-guest properties in their capsular dimers including endo complexation of neutral molecules and exo complexation of anions. Here, we demonstrate for the first time the formation of hydrogen bonded hexamer of tetraisobutyl-octahydroxypyridinearene in all three states of matter - gas phase, solution and solid-state. Cationic tris(bipyridine)ruthenium(ii) template was found to stabilize the hexamer in gas phase, whereas solvent molecules do this in condensed phases. In solution, the capsular hexamer was found to be the thermodynamically favoured self-assembly product and transition from dimer to hexamer occurred in course of time. The crystal structure of hexamer revealed 24 N-HO direct intermolecular hydrogen bonds between the six pyridinearene macrocycles without any bridging solvent molecules. Hydrogen bond patterns correlate well with DFT computed structures. Thus, all structural chemistry methods (IM-MS, DOSY NMR, DFT, X-ray crystallography) support the same structure of the hexameric capsule that has a diameter of ca. 3 nm and volume of 1160 Å3.

16.
Molecules ; 24(15)2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31362371

RESUMO

Phytochemical investigations of ethanol root bark and stem bark extracts of Cleistochlamys kirkii (Benth.) Oliv. (Annonaceae) yielded a new benzopyranyl cadinane-type sesquiterpene (cleistonol, 1) alongside 12 known compounds (2-13). The structures of the isolated compounds were established from NMR spectroscopic and mass spectrometric analyses. Structures of compounds 5 and 10 were further confirmed by single crystal X-ray crystallographic analyses, which also established their absolute stereochemical configuration. The ethanolic crude extract of C. kirkii root bark gave 72% inhibition against the chloroquine-sensitive 3D7-strain malaria parasite Plasmodium falciparum at 0.01 µg/mL. The isolated metabolites dichamanetin, (E)-acetylmelodorinol, and cleistenolide showed IC50 = 9.3, 7.6 and 15.2 µM, respectively, against P. falciparum 3D7. Both the crude extract and the isolated compounds exhibited cytotoxicity against the triple-negative, aggressive breast cancer cell line, MDA-MB-231, with IC50 = 42.0 µg/mL (crude extract) and 9.6-30.7 µM (isolated compounds). Our findings demonstrate the potential applicability of C. kirkii as a source of antimalarial and anticancer agents.


Assuntos
Annonaceae/química , Antimaláricos/química , Antimaláricos/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Sesquiterpenos Policíclicos/química , Sesquiterpenos Policíclicos/farmacologia , Annonaceae/metabolismo , Humanos , Malária/tratamento farmacológico , Conformação Molecular , Estrutura Molecular , Testes de Sensibilidade Parasitária , Análise Espectral
17.
Angew Chem Int Ed Engl ; 58(51): 18610-18618, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31613414

RESUMO

A study of the strong N-X⋅⋅⋅- O-N+ (X=I, Br) halogen bonding interactions reports 2×27 donor×acceptor complexes of N-halosaccharins and pyridine N-oxides (PyNO). DFT calculations were used to investigate the X⋅⋅⋅O halogen bond (XB) interaction energies in 54 complexes. A simplified computationally fast electrostatic model was developed for predicting the X⋅⋅⋅O XBs. The XB interaction energies vary from -47.5 to -120.3 kJ mol-1 ; the strongest N-I⋅⋅⋅- O-N+ XBs approaching those of 3-center-4-electron [N-I-N]+ halogen-bonded systems (ca. 160 kJ mol-1 ). 1 H NMR association constants (KXB ) determined in CDCl3 and [D6 ]acetone vary from 2.0×100 to >108 m-1 and correlate well with the calculated donor×acceptor complexation enthalpies found between -38.4 and -77.5 kJ mol-1 . In X-ray crystal structures, the N-iodosaccharin-PyNO complexes manifest short interaction ratios (RXB ) between 0.65-0.67 for the N-I⋅⋅⋅- O-N+ halogen bond.

18.
Chemistry ; 24(70): 18676-18681, 2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30324765

RESUMO

The self-assembly properties of nine low-molecular-weight gelators (LMWGs) based on bile acid alkyl amides were studied in detail. Based on the results, the number of hydroxyl groups attached to the steroidal backbone plays a major role in the gelation, although the nature of the aliphatic side chain also modulates the gelation abilities. Of the 50 gel systems studied, 35 are based on lithocholic acid and 15 on cholic acid derivatives. The deoxycholic acid derivatives did not form any gels. The gelation occurred primarily in aromatic solvents and the gels manifested typical fibrous or spherical morphologies. The 13 C cross-polarized magic angle spinning (CPMAS) NMR spectra measured on the crystalline materials and the corresponding wet organogels were analogous, suggesting that the chemical environments, that is, the intermolecular interactions found in the two materials were similar. The single-crystal X-ray structures of all nine bile-acid amide derivatives studied revealed very similar molecular conformations in the solid state and gave insights into the possible intermolecular interactions in the gel state.

19.
Chemistry ; 24(12): 2936-2943, 2018 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-29205565

RESUMO

Confined molecular environments have peculiar characteristics that make their properties unique in the field of biological and chemical sciences. In recent years, advances in supramolecular capsule and cage synthesis have presented the possibility to interpret the principles behind their self-assembly and functions, which has led to new molecular systems that display outstanding properties in molecular recognition and catalysis. Herein, we report a rapid method based on ESI-MS to determine the binding profiles for linear saturated dicarboxylic acids in a series of different cages. The cages were obtained by self-assembly of modified tris(pyridylmethyl)amine (TPMA) complexes and diamines chosen to explore variations in their size and flexibility. This methodology has provided information on how small changes in the structures of the host and guest can contribute to recognition events. Moreover, it was possible to study molecular systems that contain paramagnetic metals, which are not suitable for classical binding-constant determination by 1 H NMR spectroscopy.

20.
Chemistry ; 24(32): 8178-8185, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29603485

RESUMO

Recent work has identified a bis-(p-nitrophenyl)ureidodecalin anion carrier as a promising candidate for biomedical applications, showing good activity for chloride transport in cells yet almost no cytotoxicity. To underpin further development of this and related compounds, a detailed structural and binding investigation is reported. Crystal structures of the transporter as five solvates confirm the diaxial positioning of urea groups while revealing a degree of conformational flexibility. Structures of complexes with Cl- , Br- , NO3- , SO42- and AcO- , supported by computational studies, show how the binding site can adapt to accommodate these anions. 1 H NMR binding studies revealed exceptionally high affinities for anions in DMSO, decreasing in the order SO42- >H2 PO4- ≈HCO3- ≈AcO- ≫HSO4- >Cl- >Br- >NO3- >I- . Analysis of the binding results suggests that selectivity is determined mainly by the H-bond acceptor strength of different anions, but is also modulated by receptor geometry.


Assuntos
Ânions/química , Cloretos/química , Nitrofenóis/química , Ureia/química , Sítios de Ligação , Computadores Moleculares , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA