Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Membranes (Basel) ; 14(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38786946

RESUMO

This study highlights the effectiveness of photocatalytically modified ceramic ultrafiltration (UF) membranes in alleviating two major drawbacks of membrane filtration technologies. These are the generation of a highly concentrated retentate effluent as a waste stream and the gradual degradation of the water flux through the membrane due to the accumulation of organic pollutants on its surface. The development of two types of novel tubular membranes, featuring photocatalytic Mo-BiVO4 inverse opal coatings, demonstrated a negligible impact on water permeance, ensuring consistent filtration and photocatalytic efficiency and suggesting the potential for maintaining membrane integrity and avoiding the formation of highly concentrated retentate effluents. Morphological analysis revealed well-defined coatings with ordered domains and interconnected macropores, confirming successful synthesis of Mo-BiVO4. Raman spectroscopy and optical studies further elucidated the composition and light absorption properties of the coatings, particularly within the visible region, which is vital for photocatalysis driven by vis-light. Evaluation of the tetracycline removal efficiency presented efficient adsorption onto membrane surfaces with enhanced photocatalytic activity observed under both UV and vis-light. Additionally, vis-light irradiation facilitated significant degradation, showcasing the versatility of the membranes. Total Organic Carbon (TOC) analysis corroborated complete solute elimination or photocatalytic degradation without the production of intermediates, highlighting the potential for complete pollutant removal. Overall, these findings emphasize the promising applications of Mo-BiVO4 photocatalytic membranes in sustainable water treatment and wastewater remediation processes, laying the groundwork for further optimization and scalability in practical water treatment systems.

2.
Nanoscale ; 16(21): 10366-10376, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38739078

RESUMO

Plasmonic photocatalysis based on metal-semiconductor heterojunctions is considered a key strategy to evade the inherent limitations of poor light harvesting and charge separation of semiconductor photocatalysts. It can be profitably combined with three-dimensional photonic crystals (PCs) that offer an ideal scaffold for loading plasmonic nanoparticles and a unique architecture to intensify photon capture. In this work, Mo-doped BiVO4 inverse opals were applied as visible light-responsive photonic hosts of Ag and/or Au plasmonic nanoparticles in order to exploit the synergy of plasmonic and photonic amplification effects with interfacial charge transfer for the photoelectrocatalytic degradation of recalcitrant pharmaceutical contaminants under visible light. Photoelectrochemical evaluation indicated a major contribution from hot spot-assisted local field enhancement, most pronounced for Ag/Mo-BiVO4 PCs due to the spectral overlap of the localized surface plasmon resonance with the electronic absorption and blue-edge slow photon region of Mo-BiVO4 PCs, in contrast to weak plasmonic sensitization effects for the Au-modified PCs. The diverse band alignment at the metal-semiconductor interfaces resulted in the enhanced photoelectrocatalytic degradation of tetracycline broad spectrum antibiotic by Ag/Mo-BiVO4 and the refractory ibuprofen drug by (Ag,Au)/Mo-BiVO4, attributed to the enhanced charge separation by electron transfer toward Ag nanoparticles. Combination of visible light activated semiconductor PCs and plasmonic nanoparticles with suitable band alignment and photonic band gap may provide a versatile approach for the rational design of efficient plasmonic-photonic photoeletrocatalysts.

3.
Materials (Basel) ; 14(23)2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34885271

RESUMO

Tailoring metal oxide photocatalysts in the form of heterostructured photonic crystals has spurred particular interest as an advanced route to simultaneously improve harnessing of solar light and charge separation relying on the combined effect of light trapping by macroporous periodic structures and compositional materials' modifications. In this work, surface deposition of FeOx nanoclusters on TiO2 photonic crystals is investigated to explore the interplay of slow-photon amplification, visible light absorption, and charge separation in FeOx-TiO2 photocatalytic films. Photonic bandgap engineered TiO2 inverse opals deposited by the convective evaporation-induced co-assembly method were surface modified by successive chemisorption-calcination cycles using Fe(III) acetylacetonate, which allowed the controlled variation of FeOx loading on the photonic films. Low amounts of FeOx nanoclusters on the TiO2 inverse opals resulted in diameter-selective improvements of photocatalytic performance on salicylic acid degradation and photocurrent density under visible light, surpassing similarly modified P25 films. The observed enhancement was related to the combination of optimal light trapping and charge separation induced by the FeOx-TiO2 interfacial coupling. However, an increase of the FeOx loading resulted in severe performance deterioration, particularly prominent under UV-Vis light, attributed to persistent surface recombination via diverse defect d-states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA