RESUMO
Fabrication and characterization of flexible optical fiber bundles (FBs) with in-house synthesized high-index and low-index thermally matched glasses are presented. The FBs composed of around 15000 single-core fibers with pixel sizes between 1.1 and 10 µm are fabricated using the stack-and-draw technique from sets of thermally matched zirconium-silicate ZR3, borosilicate SK222, sodium-silicate K209, and F2 glasses. With high refractive index contrast pair of glasses ZR3/SK222 and K209/F2, FBs with numerical apertures (NAs) of 0.53 and 0.59 are obtained, respectively. Among the studied glass materials, ZR3, SK222, and K209 are in-house synthesized, while F2 is commercially acquired. Seven different FBs with varying pixel sizes and bundle diameters are characterized. Brightfield imaging of a micro-ruler and a Convallaria majalis sample and fluorescence imaging of a dye-stained paper tissue and a cirrhotic mice liver tissue are demonstrated using these FBs, demonstrating their good potential for microendoscopic imaging. Brightfield and fluorescence imaging performance of the studied FBs are compared. For both sets of glass compositions, good imaging performance is observed for FBs, with core diameter and core-to-core distance values larger than 1.6 µm and 2.3 µm, respectively. FBs fabricated with K209/F2 glass pairs revealed better performance in fluorescence imaging due to their higher NA of 0.59.
RESUMO
We present a development of microlenses achromatically corrected in near-infrared spectral windows. We show that the standard fiber drawing technology can be successfully applied to the development achromatic gradient index microlenses by means of internal nanostructurization. These gradient index microlenses can achieve similar performance to standard aspheric doublets, while utilizing a simpler, singlet element geometry with flat surfaces. A nanostructured lens with a parabolic profile was designed using a combination of the simulated annealing method and the effective medium approximation theory. Measurements on the fabricated lenses show that the microlenses have a nearly wavelength-independent focal plane at a distance of about 35 µm from the lens facet over the wavelength range of 600-1550 nm. The successful design and fabrication of achromatic flat-parallel rod microlenses opens new perspectives for micro-imaging systems and wavelength-independent coupling into optical fibers.