Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Commun Mater ; 4(1): 34, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38665394

RESUMO

In the quest for low power bio-inspired spiking sensors, functional oxides like vanadium dioxide are expected to enable future energy efficient sensing. Here, we report uncooled millimeter-wave spiking detectors based on the sensitivity of insulator-to-metal transition threshold voltage to the incident wave. The detection concept is demonstrated through actuation of biased VO2 switches encapsulated in a pair of coupled antennas by interrupting coplanar waveguides for broadband measurements, on silicon substrates. Ultimately, we propose an electromagnetic-wave-sensitive voltage-controlled spike generator based on VO2 switches in an astable spiking circuit. The fabricated sensors show responsivities of around 66.3 MHz.W-1 at 1 µW, with a low noise equivalent power of 5 nW.Hz-0.5 at room temperature, for a footprint of 2.5 × 10-5 mm2. The responsivity in static characterizations is 76 kV.W-1. Based on experimental statistical data measured on robust fabricated devices, we discuss stochastic behavior and noise limits of VO2 -based spiking sensors applicable for wave power sensing in mm-wave and sub-terahertz range.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA