Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 244: 117949, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109961

RESUMO

Petrochemical-based synthetic plastics poses a threat to humans, wildlife, marine life and the environment. Given the magnitude of eventual depletion of petrochemical sources and global environmental pollution caused by the manufacturing of synthetic plastics such as polyethylene (PET) and polypropylene (PP), it is essential to develop and adopt biopolymers as an environment friendly and cost-effective alternative to synthetic plastics. Research into bioplastics has been gaining traction as a way to create a more sustainable and eco-friendlier environment with a reduced environmental impact. Biodegradable bioplastics can have the same characteristics as traditional plastics while also offering additional benefits due to their low carbon footprint. Therefore, using organic waste from biological origin for bioplastic production not only reduces our reliance on edible feedstock but can also effectively assist with solid waste management. This review aims at providing an in-depth overview on recent developments in bioplastic-producing microorganisms, production procedures from various organic wastes using either pure or mixed microbial cultures (MMCs), microalgae, and chemical extraction methods. Low production yield and production costs are still the major bottlenecks to their deployment at industrial and commercial scale. However, their production and commercialization pose a significant challenge despite such potential. The major constraints are their production in small quantity, poor mechanical strength, lack of facilities and costly feed for industrial-scale production. This review further explores several methods for producing bioplastics with the aim of encouraging researchers and investors to explore ways to utilize these renewable resources in order to commercialize degradable bioplastics. Challenges, future prospects and Life cycle assessment of bioplastics are also highlighted. Utilizing a variety of bioplastics obtained from renewable and cost-effective sources (e.g., organic waste, agro-industrial waste, or microalgae) and determining the pertinent end-of-life option (e.g., composting or anaerobic digestion) may lead towards the right direction that assures the sustainable production of bioplastics.


Assuntos
Compostagem , Plásticos , Humanos , Biopolímeros/química , Tecnologia , Resíduos Industriais
2.
Front Plant Sci ; 13: 929114, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968126

RESUMO

Nitrogen (N) is one of the limiting factors for plant growth, and it is mainly supplied exogenously by fertilizer application. It is well documented that diazotrophic rhizobacteria improve plant growth by fixing atmospheric N in the soil. The present study investigates the nitrogen-fixing potential of two Azospirillum spp. strains using the 15N isotope-dilution method. The two diazotrophic strains (TN03 and TN09) native to the rhizosphere of potato belong to the genus Azospirillum (16S rRNA gene accession numbers LN833443 and LN833448, respectively). Both strains were able to grow on an N-free medium with N-fixation potential (138-143 nmol mg-1 protein h-1) and contained the nifH gene. Strain TN03 showed highest indole acetic acid (IAA) production (30.43 µg/mL), while TN09 showed highest phosphate solubilization activity (249.38 µg/mL) while both diazotrophs showed the production of organic acids. A 15N dilution experiment was conducted with different fertilizer inputs to evaluate the N-fixing potential of both diazotrophs in pots. The results showed that plant growth parameters and N contents increased significantly by the inoculations. Moreover, reduced 15N enrichment was found compared to uninoculated controls that received similar N fertilizer levels. This validates the occurrence of N-fixation through isotopic dilution. Strain TN09 showed higher N-fixing potential than TN03 and the uninoculated controls. Inoculation with either strain also showed a remarkable increase in plant growth under field conditions. Thus, there were remarkable increases in N use efficiency, N uptake and N utilization levels. Confocal laser scanning and transmission electron microscopy showed that TN03 is an ectophyte, i.e., present outside root cells or within the grooves of root hairs, while TN09 is an endophyte, i.e., present within root cells, forming a strong association withroot it. This study confirms that diazotrophic Azospirillum spp. added to potato systems can improve plant growth and N use efficiency, opening avenues for improvement of potato crop growth with reduced input of N fertilizer.

3.
Saudi J Biol Sci ; 26(7): 1344-1351, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31762594

RESUMO

OBJECTIVE: Maize is an important crop for fodder, food and feed industry. The present study explores the plant-microbe interactions as alternative eco-friendly sustainable strategies to enhance the crop yield. METHODOLOGY: Bacterial diversity was studied in the rhizosphere of maize by culture-dependent and culture-independent techniques by soil sampling, extraction of DNA, amplification of gene of interest, cloning of desired fragment and library construction. RESULTS: Culturable bacteria were identified as Achromobacter, Agrobacterium, Azospirillum, Bacillus, Brevibacillus, Bosea, Enterobacter, Microbacterium, Pseudomonas, Rhodococcus, Stenotrophomonas and Xanthomonas genera. For culture-independent approach, clone library of 16S ribosomal RNA gene was assembled and 100 randomly selected clones were sequenced. Majority of the sequences were related to Firmicutes (17%), Acidobacteria (16%), Actinobacteria (17%), Alpha-Proteobacteria (7%), Delta-proteobacteria (4.2%) and Gemmatimonadetes (4.2%) However, some of the sequences (30%) were novel that showed no homologies to phyla of cultured bacteria in the database. Diversity of diazotrophic bacteria in the rhizosphere investigated by analysis of PCR-amplified nifH gene sequence that revealed abundance of sequences belonging to genera Azoarcus (25%), Aeromonas (10%), Pseudomonas (10%). The diazotrophic genera Azotobacter, Agrobacterium and Zoogloea related nifH sequences were also detected but no sequence related to Azospirillum was found showing biasness of the growth medium rather than relative abundance of diazotrophs in the rhizosphere. CONCLUSION: The study provides a foundation for future research on focussed isolation of the Azoarcus and other diazotrophs found in higher abundance in the rhizosphere.

4.
PLoS One ; 12(2): e0171561, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28178330

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is a group of heterogeneous abnormalities affecting the function and structure of the kidney and mostly further proceeds to cardiovascular damage prior to end stage renal disease (ESRD). The oxidative insult and inflammatory mediators have some undefined role in CKD and cardiovascular complications. It is therefore, aimed at to pin point the predictive factors in the development of cardiovascular disorder in patients with chronic kidney disease. METHODS: Fifty patients of CKD experiencing cardiovascular distress and twenty normal individuals having same age and sex acted as control during these observations. Blood samples (Each 5 ml) were drawn and subjected to centrifugation for 10-15 minutes to separate the serum at 4000-5000rpm. The levels of MDA, GSH, SOD, CAT, VIT C, VIT E, IL-1, TNF-alpha, nitric oxide (NO) and advanced oxidation protein products (AOPPs) were estimated and analyzed. RESULTS: The nitric oxide levels in the CKD patients decreased significantly (13.26±1.25 ng/ml) compared to controls (42.15±5.26 ng/ml). The serum vitamin E and C levels in these patients recorded 2.15±0.25 µg/ml and 0.97±0.09 µg/ml respectively as against their assigned controls which read 6.35±1.22 µg/ml and 3.29±0.25 µg/ml. Furthermore, a significantly higher level of Malondialdehyde (MDA) as1.25±0.07 nmol/ml was observed in CKD patients viz-a-viz relevant control. However, the serum SOD, catalase (CAT) and GSH levels in the same patients registered a significant decline as evident from respective figures 0.07±0.002 µg/dl, 1.22±0.012 µmol/mol, and 3.25±1.05 µg/dl. The control for these was observed as0.99±0.06 µg/dl, 3.19±0.05 µmol/mol, and 8.64±0.03 µg/dL. On the other hand, the IL-1 levels in the CKD patients found quite higher (402.5±18.26 pg/ml). This clearly points to substantial increase in oxidative insult and reduced NO levels leading to the renal and cardiovascular damage. CONCLUSION: Observations support the fact that the decrease in anti-oxidative capacity accompanied by higher inflammatory mediators in CKD is indicative of oxidative stress, consequently leading to CKD progression, in all probability to cardiovascular insult. The outcome reiterates that strategies be designed afresh to contain CKD progression to cardiovascular complications and ESRD. One way could be to focus on early detection of stress related to the disease. It requires analyzing the factors related to stress, such as the one reported here. Linking these factors with the symptoms could be a crucial step forward. And further, the disease could be monitored in a more disciplined manner.


Assuntos
Doenças Cardiovasculares/etiologia , Mediadores da Inflamação/metabolismo , Estresse Oxidativo , Insuficiência Renal Crônica/complicações , Insuficiência Renal Crônica/metabolismo , Produtos da Oxidação Avançada de Proteínas/sangue , Ácido Ascórbico/sangue , Biomarcadores , Estudos de Casos e Controles , Citocinas/sangue , Feminino , Humanos , Mediadores da Inflamação/sangue , Masculino , Malondialdeído/sangue , Óxido Nítrico/metabolismo , Oxirredução , Insuficiência Renal Crônica/diagnóstico , Superóxido Dismutase/sangue , Vitamina E/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA