Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Physiol ; 234(12): 23082-23096, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31131449

RESUMO

In continuation of the investigation of osteogenic potential of solvent fractions of ethanolic extract of Cissus quadrangularis (CQ), an ancient medicinal plant, most notably known for its bone-healing properties, to isolate and identify antiosteoporotic compounds. In the current study, we report the effect of hexane fraction (CQ-H) and dichloromethane fraction (CQ-D) of CQ on the differentiation and mineralization of mouse preosteoblast cell line MC3T3-E1 (subclone 4). Growth, viability, and proliferation assays revealed that low concentrations (0.1, 1, and 100 ng/ml) of both solvent fractions were nontoxic, whereas higher concentrations were toxic to the cells. Differentiation and mineralization of MC3T3-E1 with nontoxic concentrations of CQ-D and CQ-H revealed that CQ-D delayed the mineralization of MC3T3-E1 cells. However, early and enhanced mineralization was observed in cultures treated with nontoxic concentrations of CQ-H, as indicated by Von Kossa staining and expression profile of osteoblast marker genes such as osterix, Runx2, alkaline phosphatase (ALP), collagen (Col1a1), integrin-related bone sialoprotein (IBSP), osteopontin (OPN), and osteocalcin (OCN). These findings suggest CQ-H as the most efficacious solvent fraction for further investigation to isolate and identify the active compounds in CQ-H.


Assuntos
Cissus/química , Osteoblastos/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Extratos Vegetais/farmacologia , Células 3T3 , Fosfatase Alcalina/genética , Animais , Calcificação Fisiológica/efeitos dos fármacos , Diferenciação Celular , Proliferação de Células/efeitos dos fármacos , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Hexanos/química , Cloreto de Metileno/química , Camundongos , Osteopontina/genética , Extratos Vegetais/química
2.
Cancer Res ; 84(9): 1410-1425, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38335304

RESUMO

Cancer immunotherapy has revolutionized the treatment of lung adenocarcinoma (LUAD); however, a significant proportion of patients do not respond. Recent transcriptomic studies to understand determinants of immunotherapy response have pinpointed stromal-mediated resistance mechanisms. To gain a better understanding of stromal biology at the cellular and molecular level in LUAD, we performed single-cell RNA sequencing of 256,379 cells, including 13,857 mesenchymal cells, from 9 treatment-naïve patients. Among the mesenchymal cell subsets, FAP+PDPN+ cancer-associated fibroblasts (CAF) and ACTA2+MCAM+ pericytes were enriched in tumors and differentiated from lung-resident fibroblasts. Imaging mass cytometry revealed that both subsets were topographically adjacent to the perivascular niche and had close spatial interactions with endothelial cells (EC). Modeling of ligand and receptor interactomes between mesenchymal and ECs identified that NOTCH signaling drives these cell-to-cell interactions in tumors, with pericytes and CAFs as the signal receivers and arterial and PLVAPhigh immature neovascular ECs as the signal senders. Either pharmacologically blocking NOTCH signaling or genetically depleting NOTCH3 levels in mesenchymal cells significantly reduced collagen production and suppressed cell invasion. Bulk RNA sequencing data demonstrated that NOTCH3 expression correlated with poor survival in stroma-rich patients and that a T cell-inflamed gene signature only predicted survival in patients with low NOTCH3. Collectively, this study provides valuable insights into the role of NOTCH3 in regulating tumor stroma biology, warranting further studies to elucidate the clinical implications of targeting NOTCH3 signaling. SIGNIFICANCE: NOTCH3 signaling activates tumor-associated mesenchymal cells, increases collagen production, and augments cell invasion in lung adenocarcinoma, suggesting its critical role in remodeling tumor stroma.


Assuntos
Adenocarcinoma de Pulmão , Fibroblastos Associados a Câncer , Neoplasias Pulmonares , Invasividade Neoplásica , Receptor Notch3 , Análise de Célula Única , Células Estromais , Microambiente Tumoral , Humanos , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Comunicação Celular , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Receptor Notch3/metabolismo , Receptor Notch3/genética , Transdução de Sinais , Células Estromais/metabolismo , Células Estromais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA