RESUMO
BACKGROUND: Human hydroxysteroid dehydrogenase-like 2 (HSDL2), which regulates cancer progression, is involved in lipid metabolism. However, the role of HSDL2 in cholangiocarcinoma (CCA) and the mechanism by which it regulates CCA progression by modulating ferroptosis are unclear. METHODS: HSDL2 expression levels in CCA cells and tissues were determined by quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry. The overall survival and disease-free survival of patients with high vs. low HSDL2 expression were evaluated using Kaplan-Meier curves. The proliferation, migration, and invasion of CCA cells were assessed using Cell Counting Kit-8, colony formation, 5-ethynyl-2'-deoxyuridine DNA synthesis, and transwell assays. The effect of p53 on tumor growth was explored using a xenograft mouse model. The expression of SLC7A11 in patients with CCA was analyzed using immunofluorescence. Ferroptosis levels were measured by flow cytometry, malondialdehyde assay, and glutathione assay. HSDL2-regulated signaling pathways were analyzed by transcriptome sequencing. The correlation between p53 and SLC7A11 was assessed using bioinformatics and luciferase reporter assays. RESULTS: HSDL2 expression was lower in primary human CCA tissues than in matched adjacent non-tumorous bile duct tissues. HSDL2 downregulation was a significant risk factor for shorter overall survival and disease-free survival in patients with CCA. In addition, HSDL2 knockdown enhanced the proliferation, migration, and invasion of CCA cells. The transcriptome analysis of HSDL2 knockdown cells showed that differentially expressed genes were significantly enriched in the p53 signaling pathway, and HSDL2 downregulation increased SLC7A11 levels. These findings were consistent with the qRT-PCR and western blotting results. Other experiments showed that p53 expression modulated the effect of HSDL2 on CCA proliferation in vivo and in vitro and that p53 bound to the SLC7A11 promoter to inhibit ferroptosis. CONCLUSIONS: HSDL2 knockdown promotes CCA progression by inhibiting ferroptosis through the p53/SLC7A11 axis. Thus, HSDL2 is a potential prognostic marker and therapeutic target for CCA.
Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Ferroptose , Humanos , Animais , Camundongos , Proteína Supressora de Tumor p53/genética , Colangiocarcinoma/genética , Modelos Animais de Doenças , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos , Sistema y+ de Transporte de Aminoácidos/genética , Hidroxiesteroide DesidrogenasesRESUMO
Oral solid dosage(OSD) occupies a key position in the market of Chinese patent medicines and new traditional Chinese medicines. Processing route is the foundation for the research and development of traditional Chinese medicine OSDs. On the basis of prescriptions and preparation methods of 1 308 traditional Chinese medicine OSDs recorded in the Chinese Pharmacopoeia, we summarized the patterns of processing routes of both modern dosage forms(tablets, granules, and capsules) and traditional dosage forms(pills and powder) and constructed a manufacturing classification system(MCS) based on the processing routes. Based on the MCS, statistical analyses were conducted respectively on medicinal materials, pharmaceutical excipients, extraction solvents in the pretreatment process, crushed medicinal materials, methods of concentration and purification, and methods of drying and granulation, aiming to uncover the process features. The results showed that each dosage form can be prepared via different routes with different processing methods of decoction pieces and raw materials for dosage preparation. The raw materials for dosage form preparation of traditional Chinese medicine OSDs included total extract, semi-extract, and total crushed powder, which accounted for different proportions. The raw materials for traditional dosage forms are mainly decoction pieces powder. Semi-extracts are the main raw materials for tablets and capsules, which account for 64.8% and 56.3%, respectively. Total extracts are the main raw materials for granules, with a proportion of 77.8%. Compared with tablets and capsules, traditional Chinese medicine granules with dissolubility requirements had a larger proportion of water extraction process, a higher proportion of refining process(34.7%), and a lower proportion of crushed medicinal mate-rials in semi-extract granules. There are four ways to add volatile oil to the modern dosage forms of traditional Chinese medicine. In addition, some new technologies and processes have been used in concentration, filtration, and granulation processes of traditional Chinese medicine OSDs, and the application of pharmaceutical excipients is diversified. The results of this study are expected to provide reference for the processing route design and upgrading of OSDs for new traditional Chinese medicines.
Assuntos
Excipientes , Medicina Tradicional Chinesa , Cápsulas , PósRESUMO
Solubility is an important sensory quality attribute of traditional Chinese medicine(TCM) granules. In this paper, 90 batches of granules(30 batches of TCM formula granules, 30 batches of Chinese patent medicine granules and 30 batches of Japanese Kampo granules) were used as the research objects. The turbidity sensor was used to characterize the turbidity curve of the granule dissolution process. The classification system of granule dissolution behaviors was constructed from three dimensions: dissolution degree, equilibrium time, and dissolution mechanism. According to the equilibrium time, the granule dissolution rates were divided into three categories : faster(<100 s), general(101-300 s) and slow(>301 s). According to the turbidity curve profile, the granule dissolution mechanisms were classified into dissolution-controlled type(α-type), dispersion-controlled type(ß-type), and dispersion-controlled type followed by dissolution-controlled type(γ-type). The proportion of TCM formula granules, Chinese patent medicine granules and Japanese Kampo granules with complete dissolution or slight turbidity at the end of dissolution was 46.7%, 96.7%, and 10.0%. The proportion of TCM formula granules, Chinese patent medicine granules, and Japanese Kampo granules with faster dissolution rates(<100 s) was 23.3%, 26.7%, and 40.0%. The average dissolution rate of Japanese Kampo granules was faster than that of TCM formula granules, and it was slightly faster than the average dissolution rate of Chinese patent medicine granules. The dissolution mechanism of Chinese patent medicine granules was mainly α-type, while that of Japanese Kampo granules was mainly ß-type, and the three types of dissolution mechanisms of TCM formula granules accounted for a relatively average. The purpose of improving the solubility and dispersion of granules can be achieved by combining the comprehensive application of various functional excipients with the small dosage of Japanese Kampo granules and the wide addition scope of excipients. In the process of transforming TCM compound prescriptions into formulas, there is still much room for innovation in formula excipients and process optimization.
Assuntos
Produtos Biológicos , Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Excipientes , Solubilidade , Medicamentos sem PrescriçãoRESUMO
In this paper, 50 batches of representative traditional Chinese medicine tablets were selected and the disintegration time was examined with the method in Chinese Pharmacopoeia. The disintegration time and disintegration phenomenon were recorded, and the dissolution behaviors of water-soluble and ultraviolet-absorbent components during the disintegration process of tablets were characterized by self-control method. The results revealed that coating type and raw material type influenced the disintegration time of tablets. It was found that only 4% of traditional Chinese medicine tablets had obvious fragmentation during the disintegration process, while 96% of traditional Chinese medicine tablets showed gradual dissolution or dispersion. Furthermore, according to the disintegration speed, disintegration phenomenon, and whether the cumulative dissolution of measured components was > 90% at complete disintegration, a disintegration behavior classification system(DBCS) was created for the regular-release traditional Chinese medicine tablets. As a result, the disintegration behaviors of 50 batches of traditional Chinese medicine tablets were classified into four categories, i.e. â A_2, â B_1, â ¡B_1, and â ¡B_2. traditional Chinese medicine tablets(Class I) with disintegration time ≤ 30 min were defined to be rapid in disintegration, which can be the objective of optimization or improvement of Chinese herbal extract(semi extract) tablets. Different drug release models were used to fit the dissolution curve of traditional Chinese medicine tablets with gradual dissolution or dispersion phenomenon(i.e. Type B tablets). The results showed that the dissolution curves of water-soluble components in the disintegration process conformed to the zero order kinetics and the Ritger-Peppas model. It could be inferred that the disintegration mechanisms of type B tablets were a combination of dissolution controlled and swelling controlled mechanisms. This study contributes to understanding the disintegration behavior of traditional Chinese medicine tablets, and provides a reference for the design and improvement of disintegration performance of traditional Chinese medicine tablets.
Assuntos
Composição de Medicamentos , Medicina Tradicional Chinesa , Comprimidos , Comércio , ÁguaRESUMO
In the new stage for intelligent manufacturing of traditional Chinese medicine(TCM) from pilot demonstration to in-depth application and comprehensive promotion, how to raise the degree of intelligence for the process quality control system has become the bottleneck of the development of TCM production process control technology. This article has sorted out 226 TCM intelligent manufacturing projects that have been approved by the national and provincial governments since the implementation of the "Made in China 2025" plan and 145 related pharmaceutical enterprises. Then, the patents applied by these pharmaceutical enterprises were thoroughly retrieved, and 135 patents in terms of intelligent quality control technology in the production process were found. The technical details about intelligent quality control at both the unit levels such as cultivation, processing of crude herbs, preparation pretreatment, pharmaceutical preparations, and the production workshop level were reviewed from three aspects, i.e., intelligent quality sensing, intelligent process cognition, and intelligent process control. The results showed that intelligent quality control technologies have been preliminarily applied to the whole process of TCM production. The intelligence control of the extraction and concentration processes and the intelligent sensing of critical quality attributes are currently the focus of pharmaceutical enterprises. However, there is a lack of process cognitive patent technology for the TCM manufacturing process, which fails to meet the requirements of closed-loop integration of intelligent sensing and intelligent control technologies. It is suggested that in the future, with the help of artificial intelligence and machine learning methods, the process cognitive bottleneck of TCM production can be overcome, and the holistic quality formation mechanisms of TCM products can be elucidated. Moreover, key technologies for system integration and intelligent equipment are expected to be innovated and accelerated to enhance the quality uniformity and manufacturing reliability of TCM.
Assuntos
Inteligência Artificial , Medicina Tradicional Chinesa , Reprodutibilidade dos Testes , Controle de Qualidade , Inteligência , Preparações FarmacêuticasRESUMO
Hepatocellular carcinoma (HCC) is associated with high mortality rate. This study investigated the status of lipid metabolism-related genes in HCC. Bulk transcriptomic and single-cell sequencing data for HCC were retrieved from public databases. The single-cell sequencing data was subjected to dimensionality reduction, which facilitated the annotation of distinct cell subpopulations and marker gene expression analysis within each subpopulation. Genes associated with lipid metabolism in liver cells were identified, and a machine-learning model was developed using the bulk transcriptomic data randomly partitioned into training and validation sets. The efficacy of the model was validated using these two sets. A multifactorial Cox analysis on the model genes combined with clinical features, led to the identification of age, HMGCS2, HNRNPU, and RAN as independent prognostic factors, which were included in the nomogram model construction and validation. A weighted gene co-expression analysis of all genes of the bulk transcriptome samples revealed the correlation between gene modules and risk score. Genes with cor > 0.4 in the highest-expressing module were selected for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes functional enrichment analysis. Immune-related analysis was conducted based on seven algorithms for immune cell infiltration prediction. For the genes in the nomogram model, the expression in clinical pathological factors was also analyzed. The drug sensitivity analysis offered a reference for the selection of targeting drugs. This investigation provides novel insights and a theoretical basis for the prognosis, treatment, and pharmaceutical advancements for patients diagnosed with HCC.
RESUMO
BACKGROUND: To date, carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA) have been widely used for the screening, diagnosis and prediction of biliary tract cancer (BTC) patients. However, few studies with large sample sizes of carbohydrate antigen 50 (CA50) were reported in BTC patients. METHODS: A total of 1121 patients from the Liver Cancer Clin-Bio Databank of Anhui Hepatobiliary Surgery Union between January 2017 and December 2022 were included in this study (673 in the training cohort and 448 in the validation cohort): among them, 458 with BTC, 178 with hepatocellular carcinoma (HCC), 23 with combined hepatocellular-cholangiocarcinoma, and 462 with nontumor patients. Receiver operating characteristic (ROC) curves and decision curve analysis (DCA) were used to evaluate the diagnostic efficacy and clinical usefulness. RESULTS: ROC curves obtained by combining CA50, CA19-9, and AFP showed that the AUC value of the diagnostic MODEL 1 was 0.885 (95% CI 0.856-0.885, specificity 70.3%, and sensitivity 84.0%) in the training cohort and 0.879 (0.841-0.917, 76.7%, and 84.3%) in the validation cohort. In addition, comparing iCCA and HCC (235 in the training cohort, 157 in the validation cohort), the AUC values of the diagnostic MODEL 2 were 0.893 (95% CI 0.853-0.933, specificity 96%, and sensitivity 68.6%) in the training cohort and 0.872 (95% CI 0.818-0.927, 94.2%, and 64.6%) in the validation cohort. CONCLUSION: The model combining CA50, CA19-9, and AFP not only has good diagnostic value for BTC but also has good diagnostic value for distinguishing iCCA and HCC.
Assuntos
Antígenos Glicosídicos Associados a Tumores , Neoplasias do Sistema Biliar , Biomarcadores Tumorais , Curva ROC , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Antígenos Glicosídicos Associados a Tumores/sangue , Neoplasias do Sistema Biliar/diagnóstico , Neoplasias do Sistema Biliar/sangue , Biomarcadores Tumorais/sangue , Antígeno CA-19-9/sangue , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/sangue , Colangiocarcinoma/diagnóstico , Colangiocarcinoma/sangue , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/sangue , Estudos Retrospectivos , Sensibilidade e EspecificidadeRESUMO
In this paper, the material library approach was used to uncover the pattern of tabletability change and related risk for tablet formulation design under the roll compaction and dry granulation (RCDG) process. 31 materials were fully characterized using 18 physical parameters and 9 compression behavior classification system (CBCS) parameters. Then, each material was dry granulated and sieved into small granules (125-250 µm) and large granules (630-850 µm), respectively. The compression behavior of granules was characterized by the CBCS descriptors, and were compared with that of ungranulated powders. The relative change of tabletability (CoTr) index was used to establish the tabletability change classification system (TCCS), and all materials were classified into three types, i.e. loss of tabletability (LoT, Type I), unchanged tabletability (Type II) and increase of tabletability (Type III). Results showed that approximately 65% of materials presented LoT, and as the granules size increased, 84% of the materials exhibited LoT. A risk decision tree was innovatively proposed by joint application of the CBCS tabletability categories and the TCCS tabletability change types. It was found that the LoT posed little risk to the tensile strength of the final tablet, when Category 1 or 2A materials, or Category 2B materials with Type II or Type III change of tabletability were used. Formulation risk happened to Category 2C or 3 materials, or Category 2B materials with Type I change of tabletability, particularly when high proportions of these materials were involved in tablet formulation. In addition, the risk assessment results were verified in the material property design space developed from a latent variable model in prediction of tablet tensile strength. Overall, results suggested that a combinational use of CBCS and TCCS could aid the decision making in selecting materials for tablet formulation design via RCDG.
RESUMO
BACKGROUND: Biliary fistula is a common but serious complication after radical resection of hilar cholangiocarcinoma. We aimed to evaluate the influencing factors of biliary fistula after radical resection, to provide insights to the clinical treatment of hilar cholangiocarcinoma. METHODS: Patients undergoing radical resection of hilar cholangiocarcinoma from January 1, 2015 to March 31, 2022 were selected. Patients' personnel characteristics and laboratory test results of patients with and without biliary fistula were collected and compared. Logistic regression analyses were conducted to evaluate the associated risk factors of biliary fistula. RESULTS: 160 patients undergoing radical resection of hilar cholangiocarcinoma were included, the incidence of postoperative biliary fistulas was 20.63%. There were significant differences in the age, preoperative cholangitis and number of biliary anastomosis between biliary fistula and no biliary fistula patients (all p < 0.05). There were significant differences in the gamma glutamyl transpeptidase (GGT) on the first day after surgery, Klebsiella pneumoniae between biliary fistula and no biliary fistula patients (all p < 0.05). Logistic regression analysis indicated that age ≥ 65 years (OR 2.035, 95%CI 1.131-3.007), preoperative cholangitis (OR 1.584, 95% CI 1.081-2.361), number of biliary anastomosis ≥ 2(OR 2.866, 95%CI 1.942-3.624), GGT on the first day after surgery ≥ 120 U/L (OR 1.823, 95%CI: 1.274-2.906), preoperative bile culture for Klebsiella pneumoniae (OR 3.181, 95%CI: 2.426-3.992) were the risk factors of postoperative biliary fistulas (all p < 0.05). CONCLUSIONS: There are many independent risk factors for postoperative biliary fistula in patients undergoing radical resection of hilar cholangiocarcinoma. Clinical medical workers should take early interventions and treatment measures for these high-risk patients to reduce the occurrence of postoperative biliary fistula.