Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Arterioscler Thromb Vasc Biol ; 38(9): 2016-2027, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30026271

RESUMO

Objective- The objective of this study was to determine the basis of resistance to atherosclerosis of inbred mouse strain BALB/cJ. Approach and Results- BALB/cJ mice carry a naturally occurring null mutation of the gene encoding the transcription factor Zhx2, and genetic analyses suggested that this may confer resistance to atherosclerosis. On a hyperlipidemic low-density lipoprotein receptor null background, BALB/cJ mice carrying the mutant allele for Zhx2 exhibited up to a 10-fold reduction in lesion size as compared with an isogenic strain carrying the wild-type allele. Several lines of evidence, including bone marrow transplantation studies, indicate that this effect of Zhx2 is mediated, in part, by monocytes/macrophages although nonbone marrow-derived pathways are clearly involved as well. Both in culture and in atherosclerotic lesions, macrophages from Zhx2 null mice exhibited substantially increased apoptosis. Zhx2 null macrophages were also enriched for M2 markers. Effects of Zhx2 on proliferation and other bone marrow-derived cells, such as lymphocytes, were at most modest. Expression microarray analyses identified >1000 differentially expressed transcripts between Zhx2 wild-type and null macrophages. To identify the global targets of Zhx2, we performed ChIP-seq (chromatin immunoprecipitation sequencing) studies with the macrophage cell line RAW264.7. The ChIP-seq peaks overlapped significantly with gene expression and together suggested roles for transcriptional repression and apoptosis. Conclusions- A mutation of Zhx2 carried in BALB/cJ mice is responsible in large part for its relative resistance to atherosclerosis. Our results indicate that Zhx2 promotes macrophage survival and proinflammatory functions in atherosclerotic lesions, thereby contributing to lesion growth.


Assuntos
Apoptose , Aterosclerose/fisiopatologia , Proteínas de Homeodomínio/fisiologia , Macrófagos/fisiologia , Fatores de Transcrição/fisiologia , Dedos de Zinco/fisiologia , Animais , Proliferação de Células , Modelos Animais de Doenças , Expressão Gênica , Proteínas de Homeodomínio/genética , Macrófagos/citologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fatores de Transcrição/genética , Dedos de Zinco/genética
2.
Physiol Genomics ; 44(1): 1-13, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22010005

RESUMO

Inbred strains of mice are strikingly different in susceptibility to obesity-driven diabetes. For instance, deficiency in leptin receptor (db/db) leads to hyperphagia and obesity in both C57BL/6 and DBA/2 mice, but only on the DBA/2 background do the mice develop beta-cell loss leading to severe diabetes, while C57BL/6 mice are relatively resistant. To further investigate the genetic factors predisposing to diabetes, we have studied leptin receptor-deficient offspring of an F2 cross between C57BL/6J (db/+) males and DBA/2J females. The results show that the genetics of diabetes susceptibility are enormously complex and a number of quantitative trait loci (QTL) contributing to diabetes-related traits were identified, notably on chromosomes 4, 6, 7, 9, 10, 11, 12, and 19. The Chr. 4 locus is likely due to a disruption of the Zfp69 gene in C57BL/6J mice. To identify candidate genes and to model coexpression networks, we performed global expression array analysis in livers of the F2 mice. Expression QTL (eQTL) were identified and used to prioritize candidate genes at clinical trait QTL. In several cases, clusters of eQTLs colocalized with clinical trait QTLs, suggesting a common genetic basis. We constructed coexpression networks for both 5 and 12 wk old mice and identified several modules significantly associated with clinical traits. One module in 12 wk old mice was associated with several measures of hepatic fat content as well as with other lipid- and diabetes-related traits. These results add to the understanding of the complex genetic interactions contributing to obesity-induced diabetes.


Assuntos
Diabetes Mellitus Experimental/etiologia , Diabetes Mellitus Experimental/genética , Predisposição Genética para Doença , Obesidade/complicações , Animais , Cruzamentos Genéticos , Diabetes Mellitus Experimental/patologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Predisposição Genética para Doença/genética , Técnicas Genéticas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Camundongos Obesos , Análise em Microsséries , Obesidade/genética , Polimorfismo de Nucleotídeo Único , Biologia de Sistemas/métodos
3.
Hum Mol Genet ; 19(4): 597-608, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19995791

RESUMO

Upstream transcription factor 1 (USF1) has been associated with familial combined hyperlipidemia, the metabolic syndrome, and related conditions, but the mechanisms involved are unknown. In this study, we report validation of Usf1 as a causal gene of cholesterol homeostasis, insulin sensitivity and body composition in mouse models using several complementary approaches and identify associated pathways and gene expression network modules. Over-expression of human USF1 in both transgenic mice and mice with transient liver-specific over-expression influenced metabolic trait phenotypes, including obesity, total cholesterol level, LDL/VLDL cholesterol and glucose/insulin ratio. Additional analyses of trait and hepatic gene expression data from an F2 population derived from C57BL/6J and C3H/HeJ strains in which there is a naturally occurring variation in Usf1 expression supported a causal role for Usf1 for relevant metabolic traits. Gene network and pathway analyses of the liver gene expression signatures in the F2 population and the hepatic over-expression model suggested the involvement of Usf1 in immune responses and metabolism, including an Igfbp2-centered module. In all three mouse model settings, notable sex specificity was observed, consistent with human studies showing differences in association with USF1 gene polymorphisms between sexes.


Assuntos
Hiperlipidemia Familiar Combinada/metabolismo , Lipídeos/sangue , Fatores Estimuladores Upstream/metabolismo , Animais , Colesterol/sangue , Modelos Animais de Doenças , Feminino , Humanos , Hiperlipidemia Familiar Combinada/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fatores Estimuladores Upstream/genética
4.
J Am Heart Assoc ; 5(2)2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26903003

RESUMO

BACKGROUND: The choline-derived metabolite trimethylamine N-oxide (TMAO) has been demonstrated to contribute to atherosclerosis and is associated with coronary artery disease risk. METHODS AND RESULTS: We explored the impact of TMAO on endothelial and smooth muscle cell function in vivo, focusing on disease-relevant outcomes for atherogenesis. Initially, we observed that aortas of LDLR(-/-) mice fed a choline diet showed elevated inflammatory gene expression compared with controls. Acute TMAO injection at physiological levels was sufficient to induce the same inflammatory markers and activate the well-known mitogen-activated protein kinase, extracellular signal-related kinase, and nuclear factor-κB signaling cascade. These observations were recapitulated in primary human aortic endothelial cells and vascular smooth muscle cells. We also found that TMAO promotes recruitment of activated leukocytes to endothelial cells. Through pharmacological inhibition, we further showed that activation of nuclear factor-κB signaling was necessary for TMAO to induce inflammatory gene expression in both of these relevant cell types as well as endothelial cell adhesion of leukocytes. CONCLUSIONS: Our results suggest a likely contributory mechanism for TMAO-dependent enhancement in atherosclerosis and cardiovascular risks.


Assuntos
Aortite/induzido quimicamente , Aterosclerose/induzido quimicamente , Células Endoteliais/efeitos dos fármacos , Metilaminas/toxicidade , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , NF-kappa B/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/enzimologia , Aorta/patologia , Aortite/enzimologia , Aortite/genética , Aortite/patologia , Aterosclerose/enzimologia , Aterosclerose/genética , Aterosclerose/patologia , Adesão Celular/efeitos dos fármacos , Células Cultivadas , Colina , Técnicas de Cocultura , Modelos Animais de Doenças , Células Endoteliais/enzimologia , Células Endoteliais/patologia , Ativação Enzimática , Feminino , Regulação da Expressão Gênica , Predisposição Genética para Doença , Humanos , Leucócitos/efeitos dos fármacos , Leucócitos/enzimologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/enzimologia , Músculo Liso Vascular/patologia , Miócitos de Músculo Liso/enzimologia , Miócitos de Músculo Liso/patologia , Fenótipo , Receptores de LDL/deficiência , Receptores de LDL/genética , Transdução de Sinais/efeitos dos fármacos
5.
Arterioscler Thromb Vasc Biol ; 24(10): 1928-34, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15331434

RESUMO

OBJECTIVE: We previously reported the mapping of a quantitative trait locus (QTL) on chromosome 15 contributing to hyperlipidemia in a cross between inbred strains MRL/MpJ (MRL) and BALB/cJ (BALB). Using marker-assisted breeding, we constructed a congenic strain in which chromosome 15 interval from MRL is placed on the genetic background of BALB. The congenic allowed us to confirm the QTL result and to further characterize the properties and location of the underlying gene. METHODS AND RESULTS: On chow and high-fat (atherogenic) diets, the congenic mice exhibited higher levels of plasma triglycerides and cholesterol than BALB mice. In response to the atherogenic diet, the congenic mice but not BALB mice exhibited a dramatic approximately 30-fold increase in atherogenic lesions accompanied by approximately 2-fold decrease in high-density lipoprotein cholesterol levels. With respect to atherosclerotic lesions and some lipid parameters, this chromosome 15 gene, designated Hyplip2, exhibited dominant inheritance. Expression array analyses suggested that Hyplip2 may influence inflammatory and bile acid synthesis pathways. Finally, we demonstrated the usefulness of subcongenic strains to narrow the locus (50 Mbp) with the goal of positionally cloning Hyplip2. CONCLUSIONS: Our data demonstrate that the Hyplip2 gene significantly contributes to combined hyperlipidemia and increased atherosclerosis in mice.


Assuntos
Arteriosclerose/genética , Hiperlipidemias/genética , Animais , Animais Congênicos , Arteriosclerose/metabolismo , Mapeamento Cromossômico/métodos , Cruzamentos Genéticos , Dieta Aterogênica , Genes/fisiologia , Hiperlipidemias/metabolismo , Lipídeos/sangue , Masculino , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos MRL lpr , Locos de Características Quantitativas/genética
6.
Physiol Rep ; 2(11)2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25428948

RESUMO

Diabetic nephropathy (DN) is a major complication of diabetes and the leading cause of end-stage renal disease. DN is characterized by changes in kidney structure and function but the underlying genetic and molecular factors are poorly understood. We used a mouse diversity panel to explore the genetic basis of DN traits in mice carrying the Ins2 Akita mutation. Twenty-eight Akita strains were generated by breeding this panel to DBA/2.Akita mice. Male F1 diabetic and nondiabetic littermates were evaluated for DN-related traits. Urine albumin-to-creatinine ratios (ACRs), volume and cystatin C as well as blood urea nitrogen and lipoprotein levels varied significantly among the diabetic strains. For most Akita strains, ACR values increased 2- to 6-fold over euglycemic control values. However, six strains exhibited changes in ACR exceeding 10-fold with two strains (NOD/ShiLt and CBA) showing 50- to 83- fold increases. These increases are larger than previously reported among available DN mouse models establishing these strains as useful for additional studies of renal function. ACRs correlated with cystatin C (P = 0.0286), a measure of hyperfiltration and an interstitial tubular marker associated with DN onset in humans suggesting that tubule damage as well as podocyte-stress contributed to reduced kidney function assessed by ACR. Although large changes were seen for ACRs, severe nephropathology was absent. However, glomerular hypertrophy and collagen IV content were found to vary significantly among strains suggesting a genetic basis for early onset features of DN. Our results define the range of DN phenotypes that occur among common inbred strains of mice.

7.
Nat Genet ; 41(4): 415-23, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19270708

RESUMO

A principal task in dissecting the genetics of complex traits is to identify causal genes for disease phenotypes. We previously developed a method to infer causal relationships among genes through the integration of DNA variation, gene transcription and phenotypic information. Here we have validated our method through the characterization of transgenic and knockout mouse models of genes predicted to be causal for abdominal obesity. Perturbation of eight out of the nine genes, with Gas7, Me1 and Gpx3 being newly confirmed, resulted in significant changes in obesity-related traits. Liver expression signatures revealed alterations in common metabolic pathways and networks contributing to abdominal obesity and overlapped with a macrophage-enriched metabolic network module that is highly associated with metabolic traits in mice and humans. Integration of gene expression in the design and analysis of traditional F(2) intercross studies allows high-confidence prediction of causal genes and identification of pathways and networks involved.


Assuntos
Proteínas de Transporte/genética , Glutationa Peroxidase/genética , Glicoproteínas/genética , Proteínas do Tecido Nervoso/genética , Obesidade/genética , Abdome/anatomia & histologia , Tecido Adiposo/anatomia & histologia , Animais , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Variação Genética , Humanos , Fígado/fisiologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Músculo Esquelético/anatomia & histologia , Fenótipo , Reprodutibilidade dos Testes , Transcrição Gênica , Proteínas de Transporte Vesicular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA