Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Plant Cell Rep ; 43(6): 160, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38825616

RESUMO

KEY MESSAGE: LeBAHD56 is preferentially expressed in tissues where shikonin and its derivatives are biosynthesized, and it confers shikonin acylation in vivo. Two WRKY transcriptional factors might regulate LeBAHD56's expression. Shikonin and its derivatives, found in the roots of Lithospermum erythrorhizon, have extensive application in the field of medicine, cosmetics, and other industries. Prior research has demonstrated that LeBAHD1(LeSAT1) is responsible for the biochemical process of shikonin acylation both in vitro and in vivo. However, with the exception of its documented in vitro biochemical function, there is no in vivo genetic evidence supporting the acylation function of the highly homologous gene of LeSAT1, LeBAHD56(LeSAT2), apart from its reported role. Here, we validated the critical acylation function of LeBAHD56 for shikonin using overexpression (OE) and CRISPR/Cas9-based knockout (KO) strategies. The results showed that the OE lines had a significantly higher ratio of acetylshikonin, isobutyrylshikonin or isovalerylshikonin to shikonin than the control. In contrast, the KO lines had a significantly lower ratio of acetylshikonin, isobutyrylshikonin or isovalerylshikonin to shikonin than controls. As for its detailed expression patterns, we found that LeBAHD56 is preferentially expressed in roots and callus cells, which are the biosynthesis sites for shikonin and its derivatives. In addition, we anticipated that a wide range of putative transcription factors might control its transcription and verified the direct binding of two crucial WRKY members to the LeBAHD56 promoter's W-box. Our results not only confirmed the in vivo function of LeBAHD56 in shikonin acylation, but also shed light on its transcriptional regulation.


Assuntos
Regulação da Expressão Gênica de Plantas , Lithospermum , Naftoquinonas , Proteínas de Plantas , Plantas Geneticamente Modificadas , Naftoquinonas/metabolismo , Lithospermum/genética , Lithospermum/metabolismo , Acilação , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Sistemas CRISPR-Cas , Antraquinonas
2.
Bioorg Chem ; 139: 106703, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37399615

RESUMO

Warburg effect provides energy and material essential for tumor proliferation, the reverse of Warburg effect provides insights into the development of a novel anti-cancer strategy. Pyruvate kinase 2 (PKM2) and pyruvate dehydrogenase kinase 1 (PDK1) are two key enzymes in tumor glucose metabolism pathway that not only contribute to the Warburg effect through accelerating aerobic glycolysis, but also serve as druggable target for colorectal cancer (CRC). Considering that targeting PKM2 or PDK1 alone does not seem to be sufficient to remodel abnormal glucose metabolism and achieve significant antitumor activity, a series of novel benzenesulfonyl shikonin derivatives were designed to regulate PKM2 and PDK1 simultaneously. By means of molecular docking and antiproliferative screen, we found that compound Z10 could act as the combination of PKM2 activator and PDK1 inhibitor, thereby significantly inhibited glycolysis that reshaping tumor metabolism. Moreover, Z10 could inhibit proliferation, migration and induce apoptosis in CRC cell HCT-8. Finally, the in vivo anti-tumor activity of Z10 was evaluated in a colorectal cancer cell xenograft model in nude mice and the results demonstrated that Z10 induced tumor cell apoptosis and inhibited tumor cell proliferation with lower toxicity than shikonin. Our findings indicated that it is feasible to alter tumor energy metabolism through multi-target synergies, and the dual-target benzenesulfonyl shikonin derivative Z10 could be a potential anti-CRC agent.


Assuntos
Neoplasias Colorretais , Piruvato Quinase , Animais , Camundongos , Humanos , Camundongos Nus , Simulação de Acoplamento Molecular , Proliferação de Células , Piruvato Quinase/farmacologia , Neoplasias Colorretais/tratamento farmacológico , Glucose/metabolismo , Linhagem Celular Tumoral
3.
Int J Mol Sci ; 24(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37569907

RESUMO

3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), as the rate-limiting enzyme in the mevalonate pathway, is essential for the biosynthesis of shikonin in Lithospermum erythrorhizon. However, in the absence of sufficient data, the principles of a genome-wide in-depth evolutionary exploration of HMGR family members in plants, as well as key members related to shikonin biosynthesis, remain unidentified. In this study, 124 HMGRs were identified and characterized from 36 representative plants, including L. erythrorhizon. Vascular plants were found to have more HMGR family genes than nonvascular plants. The phylogenetic tree revealed that during lineage and species diversification, the HMGRs evolved independently and intronless LerHMGRs emerged from multi-intron HMGR in land plants. Among them, Pinus tabuliformis and L. erythrorhizon had the most HMGR gene duplications, with 11 LerHMGRs most likely expanded through WGD/segmental and tandem duplications. In seedling roots and M9 cultured cells/hairy roots, where shikonin biosynthesis occurs, LerHMGR1 and LerHMGR2 were expressed significantly more than other genes. The enzymatic activities of LerHMGR1 and LerHMGR2 further supported their roles in catalyzing the conversion of HMG-CoA to mevalonate. Our findings provide insight into the molecular evolutionary properties and function of the HMGR family in plants and a basis for the genetic improvement of efficiently produced secondary metabolites in L. erythrorhizon.

4.
Bioorg Med Chem Lett ; 57: 128503, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-34922028

RESUMO

In this study, a series of novel shikonin N-benzyl matrinic acid ester derivatives (PMMB-299-PMMB-310) were synthesized and tested for their ability to inhibit the proliferation of cancer cells. Compared with shikonin and matrine, some of the ester derivatives were found to exhibit better anti-proliferative activity against seven different cancer cell lines, with less cytotoxicity toward non-cancerous cells. The strongest anti-proliferative activity was exhibited by PMMB-302, which had an IC50 value of 2.71 µM against A549 cells. The compound caused cell cycle arrest in the G2/M phase and induced apoptosis. Effects on the expression of apoptosis-related molecules such as Bcl2, Bcl-XL, caspase-3, caspase-9 and FADD suggested that PMMB-302 has tumor suppressive roles in lung cancer cells. In addition, PMMB-302 inhibited expression of telomerase core proteins, dyskerin and NHP2, and telomerase reverse transcriptase RNA. Moreover, molecular docking of PMMB-302 was subsequently conducted to determine the probable binding mode with telomerase. Taken together, the results indicate that PMMB-302 acts as a tumor suppressor in lung cancer cells by negatively regulating telomerase expression.


Assuntos
Alcaloides/farmacologia , Antineoplásicos/farmacologia , Inibidores Enzimáticos/farmacologia , Naftoquinonas/farmacologia , Quinolizinas/farmacologia , Telomerase/antagonistas & inibidores , Alcaloides/síntese química , Alcaloides/metabolismo , Antineoplásicos/síntese química , Antineoplásicos/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/metabolismo , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Simulação de Acoplamento Molecular , Naftoquinonas/síntese química , Naftoquinonas/metabolismo , Ligação Proteica , Quinolizinas/síntese química , Quinolizinas/metabolismo , Telomerase/metabolismo , Matrinas
5.
J Appl Microbiol ; 133(3): 1975-1988, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35801665

RESUMO

AIMS: This study was conducted to evaluate 35 natural flavonoids for their in vitro susceptibility against E. coli (ATCC 25922), Ps. aeruginosa (ATCC 27853), B. subtilis (ATCC 530) and Staph. aureus (ATCC 6538) in search of a potential broad-spectrum antibiotic. METHODS AND RESULTS: Glabridin, a natural isoflavonoid isolated from Glycyrrhiza glabra L., was identified to be highly active with a MIC of 8-16 µg ml-1 against Staph. aureus, B. subtilis and E. coli. By the results of the docking simulation, we located the potential targets of glabridin as DNA gyrase and dihydrofolate reductase (DHFR). The subsequent DNA gyrase inhibition assays (glabridin: IC50  = 0.8516 µmol L-1 , ciprofloxacin: IC50  = 0.04697 µmol L-1 ), DHFR inhibition assays (glabridin: inhibition ratio = 29%, methotrexate: inhibition ratio = 45% under 100 µmol L-1 treatment) and TUNEL confirmed that glabridin acted as DNA gyrase inhibitor and DHFR mild inhibitor, exerting bactericidal activity by blocking bacterial nucleic acid synthesis. CCK-8 and in silico calculations were also conducted to verify the low cytotoxicity and acceptable druggability of glabridin. CONCLUSION: These findings suggest that glabridin represents the prototypical member of an exciting structural class of natural antimicrobial agents. SIGNIFICANCE AND IMPACT OF THE STUDY: This study reports a novel mechanism of bactericidal activity of glabridin against Staph. aureus.


Assuntos
Flavonoides , Glycyrrhiza , Antibacterianos/farmacologia , DNA Girase/genética , Escherichia coli , Flavonoides/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus
6.
Bioorg Chem ; 111: 104872, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33838560

RESUMO

Triple-negative breast cancer (TNBC) has an unfavorable prognosis attribute to its low differentiation, rapid proliferation and high distant metastasis rate. PI3K/Akt/mTOR as an intracellular signaling pathway plays a key role in the cell proliferation, migration, invasion, metabolism and regeneration. In this work, we designed and synthesized a series of anilide (dicarboxylic acid) shikonin esters targeting PI3K/Akt/mTOR signaling pathway, and assessed their antitumor effects. Through three rounds of screening by computer-aided drug design method (CADD), we preliminarily obtained sixteen novel anilide (dicarboxylic acid) shikonin esters and identified them as excellent compounds. CCK-8 assay results demonstrated that compound M9 exhibited better antiproliferative activities against MDA-MB-231, A549 and HeLa cell lines than shikonin (SK), especially for MDA-MB-231 (M9: IC50 = 4.52 ± 0.28 µM; SK: IC50 = 7.62 ± 0.26 µM). Moreover, the antiproliferative activity of M9 was better than that of paclitaxel. Further pharmacological studies showed that M9 could induce apoptosis of MDA-MB-231 cells and arrest the cell cycle in G2/M phase. M9 also inhibited the migration of MDA-MB-231 cells by inhibiting Wnt/ß-catenin signaling pathway. In addition, western blot results showed that M9 could inhibit cell proliferation and migration by down-regulating PI3K/Akt/mTOR signaling pathway. Finally, a three-dimensional quantitative structure-activity relationship (3D-QSAR) model was also constructed to provide a basis for further development of shikonin derivatives as potential antitumor drugs through structure-activity relationship analysis. To sum up, M9 could be a potential candidate for TNBC therapy.


Assuntos
Anilidas/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Ésteres/farmacologia , Naftoquinonas/farmacologia , Anilidas/síntese química , Anilidas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/síntese química , Ésteres/química , Humanos , Estrutura Molecular , Naftoquinonas/síntese química , Naftoquinonas/química , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-Atividade , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo
7.
Yi Chuan ; 43(5): 459-472, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33972216

RESUMO

Zi Cao is an important traditional medicinal plant resource in China. Shikonin and its derivatives, as the purple-red naphthoquinones among natural products of its roots, are commonly used clinically in the treatment of sores and skin inflammations. Over the past few decades, due to their highly effective multiple biological activities, pharmacological effects, good clinical efficacy and high utilization value, shikonin and its derivatives have attracted increasing attention of domestic and foreign researchers. For this reason, the wild plant germplasm resources have been suffering a grievous exploitation, leading to a serious threat to the habitat. With the development of the biosynthesis, molecular metabolism and biotechnology, as well as the continuous innovation of research methods on the biological activities and pharmacological effects of plant natural products, significant progress has been made in the research on the biosynthetic pathways and related regulatory genes of shikonin. The pharmacological action and its mechanism of shikonin have also been deeply elucidated, which greatly promoted the basic research and clinical application development of shikonin. In this review, we briefly introduce and analyze the classification of Zi Cao, structure and composition of natural shikonin and its biosynthesis pathway, functional genes related to the regulation of shikonin biosynthesis, and biological activities and pharmacological functions of shikonin. Finally, we address possible prospective for the trend on the future research and development of natural shikonin and its derivatives, hoping to provide a useful reference for the deep mining and development of medicinal natural products from important Chinese medicinal materials, and to promote the modern development of traditional Chinese medicine.


Assuntos
Produtos Biológicos , Plantas Medicinais , China , Raízes de Plantas , Estudos Prospectivos
8.
Yi Chuan ; 43(5): 487-500, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-33972218

RESUMO

Low pH with aluminum (Al) toxicity are the main limiting factors affecting crop production in acidic soil. Selection of legume crops with acid tolerance and nitrogen-fixation ability should be one of the effective measures to improve soil quality and promote agricultural production. The role of the rhizosphere microorganisms in this process has raised concerns among the research community. In this study, BX10 (Al-tolerant soybean) and BD2 (Al-sensitive soybean) were selected as plant materials. Acidic soil was used as growth medium. The soil layers from the outside to the inside of the root are bulk soil (BS), rhizosphere soil at two sides (SRH), rhizosphere soil after brushing (BRH) and rhizosphere soil after washing (WRH), respectively. High-throughput sequencing of 16S rDNA amplicons of the V4 region using the Illumina MiSeq platform was performed to compare the differences of structure, function and molecular genetic diversity of rhizosphere bacterial community of different genotypes of soybean. The results showed that there was no significant difference in alpha diversity and beta diversity in rhizosphere bacterial community among the treatments. PCA and PCoA analysis showed that BRH and WRH had similar species composition, while BS and SRH also had similar species composition, which indicated that plant mainly affected the rhizosphere bacterial community on sampling compartments BRH and WRH. The composition and abundance of rhizosphere bacterial community among the treatments were then compared at different taxonomic levels. The ternary diagram of phylum level showed that Cyanobacteria were enriched in WRH. Statistical analysis showed that the roots of Al-tolerant soybean BX10 had an enrichment effect on plant growth promoting rhizobacteria (PGPR), which included Cyanobacteria, Bacteroides, Proteobacteria and some genera and species related to the function of nitrogen fixation and aluminum tolerance. The rhizosphere bacterial community from different sampling compartments of the same genotype soybean also were selectively enriched in different PGPR. In addition, the functional prediction analysis showed that there was no significant difference in the classification and abundance of COG (clusters of orthologous groups of proteins) function among different treatments. Several COGs might be directly related to nitrogen fixation, including COG0347, COG1348, COG1433, COG2710, COG3870, COG4656, COG5420, COG5456 and COG5554. Al-sensitive soybean BD2 was more likely to be enriched in these COGs than BX10 in BRH and WRH, and the possible reason remains to be further investigated in the future.


Assuntos
Rizosfera , Solo , Alumínio , Raízes de Plantas , Microbiologia do Solo , Glycine max
9.
Bioorg Chem ; 99: 103838, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32334194

RESUMO

A series of novel pyrazoline derivatives containing methyl-1H-indole moiety were discovered as potential inhibitors for blocking APC-Asef interactions. The top hit Q19 suggested potency of inhibiting APC-Asef interactions and attractive preference for human-sourced colorectal cells. It was already comparable with the previous representative and the positive control Regorafenib before further pharmacokinetic optimization. The introduction of methyl-1H-indole moiety realized the Mitochondrial affection thus might connect the impact on the protein-interaction level with the apoptosis events. The molecular docking simulation inferred that bringing trifluoromethyl groups seemed a promising approach for causing more key interactions such as H-bonds. This work raised referable information for further discovery of inhibitors for blocking APC-Asef interactions.


Assuntos
Proteína da Polipose Adenomatosa do Colo/antagonistas & inibidores , Antineoplásicos/farmacologia , Descoberta de Drogas , Indóis/farmacologia , Pirazóis/farmacologia , Proteína da Polipose Adenomatosa do Colo/química , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Estrutura Molecular , Ligação Proteica/efeitos dos fármacos , Pirazóis/síntese química , Pirazóis/química , Fatores de Troca de Nucleotídeo Guanina Rho/antagonistas & inibidores , Fatores de Troca de Nucleotídeo Guanina Rho/química , Relação Estrutura-Atividade
10.
Bioorg Med Chem ; 27(23): 115153, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31648877

RESUMO

In this study, a series of shikonin derivatives combined with benzoylacrylic had been designed and synthesized, which showed an inhibitory effect on both tubulin and the epidermal growth factor receptor (EGFR). In vitro EGFR and cell growth inhibition assay demonstrated that compound PMMB-317 exhibited the most potent anti-EGFR (IC50 = 22.7 nM) and anti-proliferation activity (IC50 = 4.37 µM) against A549 cell line, which was comparable to that of Afatinib (EGFR, IC50 = 15.4 nM; A549, IC50 = 6.32 µM). Our results on mechanism research suggested that, PMMB-317 could induce the apoptosis of A549 cells in a dose- and time-dependent manner, along with decrease in mitochondrial membrane potential (MMP), production of ROS and alterations in apoptosis-related protein levels. Also, PMMB-317 could arrest cell cycle at G2/M phase to induce cell apoptosis, and inhibit the EGFR activity through blocking the signal transduction downstream of the mitogen-activated protein MAPK pathway and the anti-apoptotic kinase AKT pathway; typically, such results were comparable to those of afatinib. In addition, PMMB-317 could suppress A549 cell migration through the Wnt/ß-catenin signaling pathway in a dose-dependent manner. Additionally, molecular docking simulation revealed that, PMMB-317 could simultaneously combine with EGFR protein (5HG8) and tubulin (1SA0) through various forces. Moreover, 3D-QSAR study was also carried out, which could optimize our compound through the structure-activity relationship analysis. Furthermore, the in vitro and in vivo results had collectively confirmed that PMMB-317 might serve as a promising lead compound to further develop the potential therapeutic anticancer agents.


Assuntos
Acrilatos/farmacologia , Antineoplásicos/farmacologia , Benzoatos/farmacologia , Naftoquinonas/farmacologia , Moduladores de Tubulina/farmacologia , Células A549 , Acrilatos/química , Acrilatos/uso terapêutico , Animais , Antineoplásicos/química , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Benzoatos/química , Benzoatos/uso terapêutico , Desenho de Fármacos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Humanos , Camundongos Nus , Simulação de Acoplamento Molecular , Naftoquinonas/química , Naftoquinonas/uso terapêutico , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/química , Moduladores de Tubulina/uso terapêutico
11.
Curr Genomics ; 19(1): 36-49, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29491731

RESUMO

BACKGROUND: The worldwide use of glyphosate has dramatically increased, but also has been raising concern over its impact on mineral nutrition, plant pathogen, and soil microbiota. To date, the bulk of previous studies still have shown different results on the effect of glyphosate application on soil rhizosphere microbial communities. OBJECTIVE: This study aimed to clarify whether glyphosate has impact on nitrogen-fixation, pathogen or disease suppression, and rhizosphere microbial community of a soybean EPSPS-transgenic line ZUTS31 in one growth season. METHOD: Comparative analysis of the soil rhizosphere microbial communities was performed by 16S rRNA gene amplicons sequencing and shotgun metagenome sequencing analysis between the soybean line ZUTS31 foliar sprayed with diluted glyphosate solution and those sprayed with water only in seed-filling stage. RESULTS: There were no significant differences of alpha diversity but with small and insignificant difference of beta diversity of soybean rhizosphere bacteria after glyphosate treatment. The significantly enriched Gene Ontology (GO) terms were cellular, metabolic, and single-organism of biological process together with binding, catalytic activity of molecular function. The hits and gene abundances of some functional genes being involved in Plant Growth-Promoting Traits (PGPT), especially most of nitrogen fixation genes, significantly decreased in the rhizosphere after glyphosate treatment. CONCLUSION: Our present study indicated that the formulation of glyphosate-isopropylamine salt did not significantly affect the alpha and beta diversity of the rhizobacterial community of the soybean line ZUTS31, whereas it significantly influenced some functional genes involved in PGPT in the rhizosphere during the single growth season.

12.
BMC Plant Biol ; 17(1): 198, 2017 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-29132307

RESUMO

BACKGROUND: Shikonin is a naphthoquinone secondary metabolite with important medicinal value and is found in Lithospermum erythrorhizon. Considering the limited knowledge on the membrane transport mechanism of shikonin, this study investigated such molecular mechanism. RESULTS: We successfully isolated an ATP-binding cassette protein gene, LeMDR, from L. erythrorhizon. LeMDR is predominantly expressed in L. erythrorhizon roots, where shikonin accumulated. Functional analysis of LeMDR by using the yeast cell expression system revealed that LeMDR is possibly involved in the shikonin efflux transport. The accumulation of shikonin is lower in yeast cells transformed with LeMDR-overexpressing vector than that with empty vector. The transgenic hairy roots of L. erythrorhizon overexpressing LeMDR (MDRO) significantly enhanced shikonin production, whereas the RNA interference of LeMDR (MDRi) displayed a reverse trend. Moreover, the mRNA expression level of LeMDR was up-regulated by treatment with shikonin and shikonin-positive regulators, methyl jasmonate and indole-3-acetic acid. There might be a relationship of mutual regulation between the expression level of LeMDR and shikonin biosynthesis. CONCLUSIONS: Our findings demonstrated the important role of LeMDR in transmembrane transport and biosynthesis of shikonin.


Assuntos
Transportadores de Cassetes de Ligação de ATP/fisiologia , Lithospermum/metabolismo , Naftoquinonas/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transporte Biológico , Southern Blotting , Clonagem Molecular , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Genes de Plantas/fisiologia , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Análise de Sequência de DNA
13.
Bioorg Med Chem Lett ; 27(17): 4066-4074, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28757065

RESUMO

In this paper, a series of podophyllotoxin piperazine acetate ester derivatives were synthesized and investigated due to their antiproliferation activity on different human cancer cell lines. Among the congeners, C5 manifested prominent cytotoxicity towards the cancer cells, without causing damage on the non-cancer cells through inhibiting tubulin assembly and having high selectively causing damage on the human breast (MCF-7) cell line (IC50=2.78±0.15µM). Treatments of MCF-7 cells with C5 resulted in cell cycle arrest in G2/M phase and microtubule network disruption. Moreover, regarding the expression of cell cycle relative proteins CDK1, a protein required for mitotic initiation was up-regulated. Besides, Cyclin A, Cyclin B1 and Cyclin D1 proteins were down-regulated. Meanwhile, it seems that the effect of C5 on MCF-7 cells apoptosis inducing was observed to be not obvious enough. In addition, docking analysis demonstrated that the congeners occupy the colchicine binding pocket of tubulin.


Assuntos
Acetatos/farmacologia , Antineoplásicos/farmacologia , Desenho de Fármacos , Ésteres/farmacologia , Piperazinas/farmacologia , Podofilotoxina/farmacologia , Tubulina (Proteína)/metabolismo , Acetatos/síntese química , Acetatos/química , Antineoplásicos/síntese química , Antineoplásicos/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/síntese química , Ésteres/química , Humanos , Células MCF-7 , Estrutura Molecular , Piperazina , Piperazinas/síntese química , Piperazinas/química , Podofilotoxina/síntese química , Podofilotoxina/química , Polimerização/efeitos dos fármacos , Relação Estrutura-Atividade
14.
Plant Mol Biol ; 90(4-5): 345-58, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26780904

RESUMO

The phytohormone ethylene (ET) is a crucial signaling molecule that induces the biosynthesis of shikonin and its derivatives in Lithospermum erythrorhizon shoot cultures. However, the molecular mechanism and the positive regulators involved in this physiological process are largely unknown. In this study, the function of LeACS-1, a key gene encoding the 1-aminocyclopropane-1-carboxylic acid synthase for ET biosynthesis in L. erythrorhizon hairy roots, was characterized by using overexpression and RNA interference (RNAi) strategies. The results showed that overexpression of LeACS-1 significantly increased endogenous ET concentration and shikonin production, consistent with the up-regulated genes involved in ET biosynthesis and transduction, as well as the genes related to shikonin biosynthesis. Conversely, RNAi of LeACS-1 effectively decreased endogenous ET concentration and shikonin production and down-regulated the expression level of above genes. Correlation analysis showed a significant positive linear relationship between ET concentration and shikonin production. All these results suggest that LeACS-1 acts as a positive regulator of ethylene-induced shikonin biosynthesis in L. erythrorhizon hairy roots. Our work not only gives new insights into the understanding of the relationship between ET and shikonin biosynthesis, but also provides an efficient genetic engineering target gene for secondary metabolite production in non-model plant L. erythrorhizon.


Assuntos
Etilenos/farmacologia , Regulação da Expressão Gênica de Plantas/fisiologia , Lithospermum/metabolismo , Liases/metabolismo , Naftoquinonas/metabolismo , Raízes de Plantas/metabolismo , Clonagem Molecular , Biologia Computacional , DNA Complementar/genética , DNA Complementar/metabolismo , Liases/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Plantas Geneticamente Modificadas , Transdução de Sinais/fisiologia
15.
BMC Plant Biol ; 16(1): 121, 2016 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-27230755

RESUMO

BACKGROUND: The phytohormone ethylene (ET) is a key signaling molecule for inducing the biosynthesis of shikonin and its derivatives, which are secondary metabolites in Lithospermum erythrorhizon. Although ETHYLENE INSENSITIVE3 (EIN3)/EIN3-like proteins (EILs) are crucial transcription factors in ET signal transduction pathway, the possible function of EIN3/EIL1 in shikonin biosynthesis remains unknown. In this study, by targeting LeEIL-1 (L. erythrorhizon EIN3-like protein gene 1) at the expression level, we revealed the positive regulatory effect of LeEIL-1 on shikonin formation. RESULTS: The mRNA level of LeEIL-1 was significantly up-regulated and down-regulated in the LeEIL-1-overexpressing hairy root lines and LeEIL-1-RNAi hairy root lines, respectively. Specifically, LeEIL-1 overexpression resulted in increased transcript levels of the downstream gene of ET signal transduction pathway (LeERF-1) and a subset of genes for shikonin formation, excretion and/or transportation (LePAL, LeC4H-2, Le4CL-1, HMGR, LePGT-1, LeDI-2, and LePS-2), which was consistent with the enhanced shikonin contents in the LeEIL-1-overexpressing hairy root lines. Conversely, LeEIL-1-RNAi dramatically repressed the expression of the above genes and significantly reduced shikonin production. CONCLUSIONS: The results revealed that LeEIL-1 is a positive regulator of the biosynthesis of shikonin and its derivatives in L. erythrorhizon hairy roots. Our findings gave new insights into the molecular regulatory mechanism of ET in shikonin biosynthesis. LeEIL-1 could be a crucial target gene for the genetic engineering of shikonin biosynthesis.


Assuntos
Regulação da Expressão Gênica de Plantas , Lithospermum/genética , Naftoquinonas/metabolismo , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Lithospermum/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , Fatores de Transcrição/metabolismo
16.
Bioorg Med Chem Lett ; 26(14): 3237-3242, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27262599

RESUMO

In this study, we designed and synthesized eighteen podophyllotoxin-norcantharidin hybrid drugs which could exhibit more potent anti-cancer activity than the parent drugs. Through the anti-proliferation assay, the most potent anti-cancer agent was screened out, namely Q9 (IC50=0.88±0.18µM against MCF-7 cell line), and it showed lower cytotoxicity against non-cancer cells, human embryonic kidney cells (293T) (IC50=54.38±3.78µM). Additionally, based on the flow cytometry analysis result, it can cause a remarkable cell cycle arrest at G2/M phase and induce apoptosis in MCF-7 cells more significantly than podophyllotoxin or norcantharidin per se. Moreover, the expression of cell cycle relative protein CDK1 was up regulated while a protein required for mitotic initiation, Cyclin B1 was down regulated. Furthermore, according to the confocal microscopy observation results, it was shown that Q9 was a potent tubulin polymerization inhibitor and the effect is comparable to that of colchicine. For further investigation on the aforementioned mechanisms, we performed western blot experiments, thus finding the increase of the cleavage of PARP. Consistent with these new findings, molecular docking observations suggested that compound Q9 could be developed as a potential anticancer agent.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Desenho de Fármacos , Podofilotoxina/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Compostos Bicíclicos Heterocíclicos com Pontes/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HEK293 , Humanos , Células MCF-7 , Estrutura Molecular , Podofilotoxina/química , Relação Estrutura-Atividade
17.
Phytomedicine ; 126: 154894, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38377719

RESUMO

BACKGROUND: Triple-negative breast cancer (TNBC) is a malignant tumor without specific therapeutic targets and a poor prognosis. Chemotherapy is currently the first-line therapeutic option for TNBC. However, due to the heterogeneity of TNBC, not all of TNBC patients are responsive to chemotherapeutic agents. Therefore, the demand for new targeted agents is critical. ß-tubulin isotype III (Tubb3) is a prognostic factor associated with cancer progression, including breast cancer, and targeting Tubb3 may lead to improve TNBC disease control. Shikonin, the active compound in the roots of Lithospermun erythrorhizon suppresses the growth of various types of tumors, and its efficacy can be improved by altering its chemical structure. PURPOSE: In this work, the anti-TNBC effect of a shikonin derivative (PMMB276) was investigated, and its mechanism was also investigated. STUDY DESIGN/METHODS: This study combines flow cytometry, immunofluorescence staining, immunoblotting, immunoprecipitation, siRNA silencing, and the iTRAQ proteomics assay to analyze the inhibition potential of PMMB276 on TNBC. In vivo study was performed, Balb/c female murine models with or without the small molecule treatments. RESULTS: Herein, we screened 300 in-house synthesized analogs of shikonin against TNBC and identified a novel small molecule, PMMB276; it suppressed cell proliferation, induced apoptosis, and arrested the cell cycle at the G2/M phase, suggesting that it could have a tumor suppressive role in TNBC. Tubb3 was identified as the target of PMMB276 using proteomic and biological activity analyses. Meanwhile, PMMB276 regulated microtubule dynamics in vitro by inducing microtubule depolymerization and it could act as a tubulin stabilizer by a different process than that of paclitaxel. Moreover, suppressing or inhibiting Tubb3 with PMMB276 reduced the growth of breast cancer in an experimental mouse model, indicating that Tubb3 plays a significant role in TNBC progression. CONCLUSION: The findings support the therapeutic potential of PMMB276, a Tubb3 inhibitor, as a treatment for TNBC. Our findings might serve as a foundation for the utilization of shikonin and its derivatives in the development of anti-TNBC.


Assuntos
Naftoquinonas , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Animais , Camundongos , Linhagem Celular Tumoral , Neoplasias de Mama Triplo Negativas/patologia , Tubulina (Proteína) , Proteômica , Proliferação de Células
18.
Hortic Res ; 11(5): uhae067, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38725460

RESUMO

The low phosphorus (P) availability of acidic soils severely limits leguminous plant growth and productivity. Improving the soil P nutritional status can be achieved by increasing the P-content through P-fertilization or stimulating the mineralization of organic P via arbuscular mycorrhizal fungi (AMF) application; however, their corresponding impacts on plant and soil microbiome still remain to be explored. Here, we examined the effects of AMF-inoculation and P-fertilization on the growth of soybean with different P-efficiencies, as well as the composition of rhizo-microbiome in an acidic soil. The growth of recipient soybean NY-1001, which has a lower P-efficiency, was not significantly enhanced by AMF-inoculation or P-fertilization. However, the plant biomass of higher P-efficiency transgenic soybean PT6 was significantly increased by 46.74%-65.22% through AMF-inoculation. Although there was no discernible difference in plant biomass between PT6 and NY-1001 in the absence of AMF-inoculation and P-fertilization, PT6 had approximately 1.9-2.5 times the plant biomass of NY-1001 after AMF-inoculation. Therefore, the growth advantage of higher P-efficiency soybean was achieved through the assistance of AMF rather than P-fertilization in available P-deficient acidic soil. Most nitrogen (N)-fixing bacteria and some functional genes related to N-fixation were abundant in endospheric layer, as were the P-solubilizing Pseudomonas plecoglossicida, and annotated P-metabolism genes. These N-fixing and P-solubilizing bacteria were positive correlated with each other. Lastly, the two most abundant phytopathogenic fungi species accumulated in endospheric layer, they exhibited positive correlations with N-fixing bacteria, but displayed negative interactions with the majority of the other dominant non-pathogenic genera with potential antagonistic activity.

19.
Chirality ; 25(11): 757-62, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23908135

RESUMO

A series of shikonin derivatives, selectively acylated by various fluorinated carboxylic acids at the side chain of shikonin, were synthesized and their anticancer activity evaluated, in which eight compounds are reported for the first time. Among all the compounds tested, compound showed the most potent anticancer activity against B16-F10 (malignant melanoma cells), MG63 (human osteosarcoma cells), and A549 (lung cancer cells) with IC50 0.39 ± 0.01, 0.72 ± 0.04 and 0.58 ± 0.02 µmol/L. Docking simulation of compound was carried out to position into a tubulin active site to determine the probable binding conformation. All the results suggested that compound may be a potential anticancer agent.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Desenho de Fármacos , Naftoquinonas/síntese química , Naftoquinonas/farmacologia , Acilação , Antineoplásicos/química , Ácidos Carboxílicos/química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Química Sintética , Humanos , Naftoquinonas/química , Multimerização Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Especificidade por Substrato , Tubulina (Proteína)/química
20.
Clin Cosmet Investig Dermatol ; 16: 1623-1639, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37396711

RESUMO

Background: Skin cutaneous melanoma (SKCM) is the deadliest dermatology tumor. Ongoing researches have confirmed that the NOD-like receptors (NLRs) family are crucial in driving carcinogenesis. However, the function of NLRs signaling pathway-related genes in SKCM remains unclear. Objective: To establish and identify an NLRs-related prognostic signature and to explore its predictive power for heterogeneous immune response in SKCM patients. Methods: Establishment of the predictive signature using the NLRs-related genes by least absolute shrinkage and selection operator-Cox regression analysis (LASSO-COX algorithm). Through univariate and multivariate COX analyses, NLRs signature's independent predictive effectiveness was proven. CIBERSORT examined the comparative infiltration ratios of 22 distinct types of immune cells. RT-qPCR and immunohistochemistry implemented expression validation for critical NLRs-related prognostic genes in clinical samples. Results: The prognostic signature, including 7 genes, was obtained by the LASSO-Cox algorithm. In TCGA and validation cohorts, SKCM patients with higher risk scores had remarkably poorer overall survival. The independent predictive role of this signature was confirmed by multivariate Cox analysis. Additionally, a graphic nomogram demonstrated that the risk score of the NLRs signature has high predictive accuracy. SKCM patients in the low-risk group revealed a distinct immune microenvironment characterized by the significantly activated inflammatory response, interferon-α/γ response, and complement pathways. Indeed, several anti-tumor immune cell types were significantly accumulated in the low-risk group, including M1 macrophage, CD8 T cell, and activated NK cell. It is worth noting that our NLRs prognostic signature could serve as one of the promising biomarkers for predicting response rates to immune checkpoint blockade (ICB) therapy. Furthermore, the results of expression validation (RT-qPCR and IHC) were consistent with the previous analysis. Conclusion: A promising NLRs signature with excellent predictive efficacy for SKCM was developed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA