RESUMO
The cuticular wax that covers the surfaces of plants is the first barrier against environmental stresses and increasingly accumulates with light exposure. However, the molecular basis of light-responsive wax biosynthesis remains elusive. In grape (Vitis vinifera), light exposure resulted in higher wax terpenoid content and lower decay and abscission rates than controls kept in darkness. Assay for transposase-accessible chromatin with high-throughput sequencing and RNA-seq data were integrated to draw the chromatin accessibility and cis-elements regulatory map to identify the potential action sites. Terpenoid synthase 12 (VvTPS12) and 3-hydroxy-3-methylglutaryl-CoA reductase 2 (VvHMGR2) were identified as grape wax biosynthesis targets, while VvHYH and VvGATA24 were identified as terpenoid biosynthesis activators, as more abundant wax crystals and higher wax terpenoid content were observed in transiently overexpressed grape berries and Nicotiana benthamiana leaves. The interaction between VvHYH and the open chromatin of VvTPS12 was confirmed qualitatively using a dual luciferase assay and quantitatively using surface plasma resonance, with an equilibrium dissociation constant of 2.81 nm identified via the latter approach. Molecular docking simulation implied the structural nature of this interaction, indicating that 24 amino acid residues of VvHYH, including Arg106A, could bind to the VvTPS12 G-box cis-element. VvGATA24 directly bound to the open chromatin of VvHMGR2, with an equilibrium dissociation constant of 8.59 nm. Twelve amino acid residues of VvGATA24, including Pro218B, interacted with the VvHMGR2 GATA-box cis-element. Our work characterizes the mechanism underlying light-mediated wax terpenoid biosynthesis and provides gene targets for future molecular breeding.
Assuntos
Proteínas de Plantas , Terpenos , Fatores de Transcrição , Vitis , Ceras , Terpenos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Vitis/genética , Vitis/metabolismo , Ceras/metabolismo , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Regulação da Expressão Gênica de Plantas , Luz , Simulação de Acoplamento MolecularRESUMO
BACKGROUND: Thermostability is a fundamental property of proteins to maintain their biological functions. Predicting protein stability changes upon mutation is important for our understanding protein structure-function relationship, and is also of great interest in protein engineering and pharmaceutical design. RESULTS: Here we present mutDDG-SSM, a deep learning-based framework that uses the geometric representations encoded in protein structure to predict the mutation-induced protein stability changes. mutDDG-SSM consists of two parts: a graph attention network-based protein structural feature extractor that is trained with a self-supervised learning scheme using large-scale high-resolution protein structures, and an eXtreme Gradient Boosting model-based stability change predictor with an advantage of alleviating overfitting problem. The performance of mutDDG-SSM was tested on several widely-used independent datasets. Then, myoglobin and p53 were used as case studies to illustrate the effectiveness of the model in predicting protein stability changes upon mutations. Our results show that mutDDG-SSM achieved high performance in estimating the effects of mutations on protein stability. In addition, mutDDG-SSM exhibited good unbiasedness, where the prediction accuracy on the inverse mutations is as well as that on the direct mutations. CONCLUSION: Meaningful features can be extracted from our pre-trained model to build downstream tasks and our model may serve as a valuable tool for protein engineering and drug design.
Assuntos
Mutação , Estabilidade Proteica , Proteínas , Proteínas/química , Proteínas/genética , Proteínas/metabolismo , Mioglobina/química , Mioglobina/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo , Biologia Computacional/métodos , Aprendizado Profundo , Aprendizado de Máquina Supervisionado , Bases de Dados de Proteínas , Conformação ProteicaRESUMO
Dysregulated bile acid (BA)/lipid metabolism and gut bacteria dysbiosis are tightly associated with the development of obesity and non-alcoholic fatty liver disease (NAFLD). The orphan nuclear receptor, Small Heterodimer Partner (SHP/NR0B2), is a key regulator of BA/lipid metabolism, and its gene-regulating function is markedly enhanced by phosphorylation at Thr-58 mediated by a gut hormone, fibroblast growth factor-15/19 (FGF15/19). To investigate the role of this phosphorylation in whole-body energy metabolism, we generated transgenic SHP-T58A knock-in mice. Compared with wild-type (WT) mice, the phosphorylation-defective SHP-T58A mice gained weight more rapidly with decreased energy expenditure and increased lipid/BA levels. This obesity-prone phenotype was associated with the upregulation of lipid/BA synthesis genes and downregulation of lipophagy/ß-oxidation genes. Mechanistically, defective SHP phosphorylation selectively impaired its interaction with LRH-1, resulting in de-repression of SHP/LRH-1 target BA/lipid synthesis genes. Remarkably, BA composition and selective gut bacteria which are known to impact obesity, were also altered in these mice. Upon feeding a high-fat diet, fatty liver developed more severely in SHP-T58A mice compared to WT mice. Treatment with antibiotics substantially improved the fatty liver phenotypes in both groups but had greater effects in the T58A mice so that the difference between the groups was largely eliminated. These results demonstrate that defective phosphorylation at a single nuclear receptor residue can impact whole-body energy metabolism by altering BA/lipid metabolism and gut bacteria, promoting complex metabolic disorders like NAFLD. Since posttranslational modifications generally act in gene- and context-specific manners, the FGF15/19-SHP phosphorylation axis may allow more targeted therapy for NAFLD.
Assuntos
Ácidos e Sais Biliares , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Ácidos e Sais Biliares/análise , Ácidos e Sais Biliares/genética , Lipídeos/sangue , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/microbiologia , Obesidade/microbiologia , Fosforilação , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Masculino , Antibacterianos/farmacologiaRESUMO
The magneto-optical response of chiral materials holds significant potential for applications in physics, chemistry, and biology. However, exploration of the near-infrared (NIR) magneto-optical response remains limited. Herein, we report the synthesis and strong NIR-II magneto-optical activity of three pairs of chiral 3d-4f clusters of R/S-Ln15Cu54 (Ln = Sm, Gd, and Dy). Structural analysis reveals that R/S-Ln15Cu54 features a triangular prism cage with C3 symmetry. Interestingly, magnetic circular dichroism (MCD) spectra exhibit remarkable magneto-optical response in the NIR-II region, driven by the f-f transition. The maximum g-factor of R/S-Sm15Cu54 reaches 5.5 × 10-3 T-1 around 1300-1450 nm, surpassing values associated with DyIII and CuII ions. This remarkable NIR-II magneto-optical activity may be attributed to strong magnetic-dipole-allowed f-f transitions and helix chirality of the structure. This work not only presents the largest Ln-Cu clusters to date but also demonstrate the key role of magnetic-dipole-allowed transitions on magneto-optical activity.
RESUMO
The brain's dynamic spontaneous neural activity is significant in supporting cognition; however, how brain dynamics go awry in subjective cognitive decline (SCD) and mild cognitive impairment (MCI) remains unclear. Thus, the current study aimed to investigate the dynamic amplitude of low-frequency fluctuation (dALFF) alterations in patients at high risk for Alzheimer's disease and to explore its correlation with clinical cognitive assessment scales, to identify an early imaging sign for these special populations. A total of 152 participants, including 72 SCD patients, 44 MCI patients and 36 healthy controls (HCs), underwent a resting-state functional magnetic resonance imaging and were assessed with various neuropsychological tests. The dALFF was measured using sliding-window analysis. We employed canonical correlation analysis (CCA) to examine the bi-multivariate correlations between neuropsychological scales and altered dALFF among multiple regions in SCD and MCI patients. Compared to those in the HC group, both the MCI and SCD groups showed higher dALFF values in the right opercular inferior frontal gyrus (voxel P < .001, cluster P < .05, correction). Moreover, the CCA models revealed that behavioural tests relevant to inattention correlated with the dALFF of the right middle frontal gyrus and right opercular inferior frontal gyrus, which are involved in frontoparietal networks (R = .43, P = .024). In conclusion, the brain dynamics of neural activity in frontal areas provide insights into the shared neural basis underlying SCD and MCI.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Imageamento por Ressonância Magnética , Humanos , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/diagnóstico por imagem , Masculino , Feminino , Disfunção Cognitiva/fisiopatologia , Disfunção Cognitiva/diagnóstico por imagem , Idoso , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Testes Neuropsicológicos , Encéfalo/fisiopatologia , Encéfalo/diagnóstico por imagemRESUMO
Hyperuricemia is a chronic metabolic disease caused by purine metabolism disorder. And several gene loci and transporter proteins that associated with uric acid transport functions have been identified. Retinol Dehydrogenase 12 (RDH12), recognized for its role in safeguarding photoreceptors, and our study investigated the potential impact of Rdh12 mutations on other organs and diseases, particularly hyperuricemia. We assessed Rdh12 mRNA expression levels in various tissues and conducted serum biochemical analyses in Rdh12-/- mice. Compared with the wild type, significant alterations in serum uric acid levels and kidney-related biochemical indicators have been revealed. Then further analysis, including quantitative RT-PCR of gene expression in the liver and kidney, highlighted variations in the expression levels of specific genes linked to hyperuricemia. And renal histology assessment exposed mild pathological lesions in the kidneys of Rdh12-/- mice. In summary, our study suggests that Rdh12 mutations impact not only retinal function but also contribute to hyperuricemia and renal disease phenotypes in mice. Our finding implies that individuals with Rdh12 mutations may be prone to hyperuricemia and gout, emphasizing the significance of preventive measures and regular examinations in daily life.
Assuntos
Hiperuricemia , Camundongos , Animais , Hiperuricemia/genética , Ácido Úrico , Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , FenótipoRESUMO
Heterosis or hybrid vigor is a common phenomenon in plants and animals; however, the molecular mechanisms underlying heterosis remain elusive, despite extensive studies on the phenomenon for more than a century. Here we constructed a large collection of F1 hybrids of Saccharomyces cerevisiae by spore-to-spore mating between homozygous wild strains of the species with different genetic distances and compared growth performance of the F1 hybrids with their parents. We found that heterosis was prevalent in the F1 hybrids at 40°C. A hump-shaped relationship between heterosis and parental genetic distance was observed. We then analyzed transcriptomes of selected heterotic and depressed F1 hybrids and their parents growing at 40°C and found that genes associated with one-carbon metabolism and related pathways were generally up-regulated in the heterotic F1 hybrids, leading to improved cellular redox homeostasis at high temperature. Consistently, genes related with DNA repair, stress responses, and ion homeostasis were generally down-regulated in the heterotic F1 hybrids. Furthermore, genes associated with protein quality control systems were also generally down-regulated in the heterotic F1 hybrids, suggesting a lower level of protein turnover and thus higher energy use efficiency in these strains. In contrast, the depressed F1 hybrids, which were limited in number and mostly shared a common aneuploid parental strain, showed a largely opposite gene expression pattern to the heterotic F1 hybrids. We provide new insights into molecular mechanisms underlying heterosis and thermotolerance of yeast and new clues for a better understanding of the molecular basis of heterosis in plants and animals.
Assuntos
Carbono/metabolismo , Homeostase , Temperatura Alta , Vigor Híbrido , Saccharomyces cerevisiae , Homeostase/genética , Vigor Híbrido/genética , Hibridização Genética , Oxirredução , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Regulação para CimaRESUMO
IMPORTANCE: Human norovirus (HuNoV) is highly infectious and can result in severe illnesses in the elderly and children. So far, there is no effective antiviral drug to treat HuNoV infection, and thus, the development of HuNoV vaccines is urgent. However, NoV evolves rapidly, and currently, at least 10 genogroups with numerous genotypes have been found. The genetic diversity of NoV and the lack of cross-protection between different genotypes pose challenges to the development of broadly protective vaccines. In this study, guided by structural alignment between GI.1 and GII.4 HuNoV VP1 proteins, several chimeric-type virus-like particles (VLPs) were designed through surface-exposed loop grafting. Mouse immunization studies show that two of the designed chimeric VLPs induced cross-immunity against both GI.1 and GII.4 HuNoVs. To our knowledge, this is the first designed chimeric VLPs that can induce cross-immune activities across different genogroups of HuNoV, which provides valuable strategies for the development of cross-reactive HuNoV vaccines.
Assuntos
Infecções por Caliciviridae , Epitopos , Genótipo , Norovirus , Vacinas Virais , Vírion , Animais , Humanos , Camundongos , Infecções por Caliciviridae/imunologia , Infecções por Caliciviridae/prevenção & controle , Infecções por Caliciviridae/virologia , Epitopos/química , Epitopos/genética , Epitopos/imunologia , Imunização , Norovirus/química , Norovirus/classificação , Norovirus/genética , Norovirus/imunologia , Vacinas Virais/química , Vacinas Virais/genética , Vacinas Virais/imunologia , Quimera/genética , Quimera/imunologia , Proteínas do Capsídeo/química , Proteínas do Capsídeo/genética , Proteínas do Capsídeo/imunologia , Vírion/química , Vírion/genética , Vírion/imunologiaRESUMO
In patients with transplant-ineligible newly diagnosed multiple myeloma (NDMM), daratumumab reduced the risk of disease progression or death by 44% in MAIA (daratumumab/lenalidomide/dexamethasone [D-Rd]) and 58% in ALCYONE (daratumumab/bortezomib/melphalan/prednisone [D-VMP]). Minimal residual disease (MRD) is a sensitive measure of disease and response to therapy. MRD-negativity status and durability were assessed in MAIA and ALCYONE. MRD assessments using next-generation sequencing (10-5) occurred for patients achieving complete response (CR) or better and after at least CR at 12, 18, 24, and 30 months from the first dose. Progression-free survival (PFS) by MRD status and sustained MRD negativity lasting ≥6 and ≥12 months were analyzed in the intent-to-treat population and among patients achieving at least CR. In MAIA (D-Rd, n = 368; lenalidomide and dexamethasone [Rd], n = 369) and ALCYONE (D-VMP, n = 350; bortezomib/melphalan/prednisone [VMP], n = 356), the median duration of follow-up was 36.4 and 40.1 months, respectively. MRD-negative status and sustained MRD negativity lasting ≥6 and ≥12 months were associated with improved PFS, regardless of treatment group. However, daratumumab-based therapy improved rates of MRD negativity lasting ≥6 months (D-Rd, 14.9% vs Rd, 4.3%; D-VMP, 15.7% vs VMP, 4.5%) and ≥12 months (D-Rd, 10.9% vs Rd, 2.4%; D-VMP, 14.0% vs VMP, 2.8%), both of which translated to improved PFS vs control groups. In a pooled analysis, patients who were MRD negative had improved PFS vs patients who were MRD positive. Patients with NDMM who achieved MRD-negative status or sustained MRD negativity had deep remission and improved clinical outcomes. These trials were registered at www.clinicaltrials.gov as #NCT02252172 (MAIA) and #NCT02195479 (ALCYONE).
Assuntos
Anticorpos Monoclonais/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Neoplasia Residual/tratamento farmacológico , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/diagnóstico , Neoplasia Residual/diagnóstico , Intervalo Livre de Progressão , Resultado do TratamentoRESUMO
Endometritis is a significant contributor to reduced productivity in yaks in Tibet, China. The Cyt-c/Caspase-3 signaling axis plays a crucial role in the mitochondrial pathway that triggers cell apoptosis due to endogenous factors. In this study, we examined the endometrial epithelial tissue of yaks with endometritis using pathological examination, immunohistochemical analysis, TUNEL staining, qRT-PCR, and Western blot. The results indicated significant changes in the apoptotic factors of the Cyt-c/Caspase-3 signaling axis. The expression levels of Bak1, Bax, Cyt-c, Apaf-1, Caspase-9, and Caspase-3 were significantly increased (P < 0.05), while the expression level of Bcl-2 was significantly decreased. Immunohistochemistry results revealed significant increase in Bak1, Bax, Cyt-c, Apaf-1, Caspase-9, and Caspase-3 expression in the cytoplasm compared to the healthy group, except for Bcl-2, which showed a significant decrease. Pathological section analysis demonstrated that clinical endometritis in yaks led to structural damage, bleeding, congestion, and inflammatory cell infiltration in the endometrial epithelium. Our study findings indicated that clinical endometritis in yaks can modulate apoptosis of endometrial epithelial cells via the Cyt-c/Caspase-3 signaling pathway, resulting in different levels of damage. This research is pioneering in exploring cell apoptosis induced by clinical endometritis in yaks, offering novel insights and potential strategies for the future prevention and treatment of endometritis in yaks.
Assuntos
Endometrite , Animais , Feminino , Bovinos , Humanos , Caspase 3/genética , Caspase 3/metabolismo , Caspase 9/metabolismo , Endometrite/veterinária , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Apoptose , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Transdução de Sinais , Células Epiteliais/metabolismoRESUMO
Natural killer/T cell lymphoma (NKTCL) is a highly aggressive, heterogeneous non-Hodgkin lymphoma resulting from malignant proliferation of cytotoxic natural killer (NK) or T cells. Previous studies demonstrated variable expression of CD38 on NKTCL tumors. Daratumumab, a human IgGκ monoclonal antibody targeting CD38 with a direct on-tumor and immunomodulatory mechanism of action, was hypothesized to be a novel therapeutic option for patients with relapsed or refractory (R/R) NKTCL. In the phase 2 NKT2001 study (ClinicalTrials.gov Identifier: NCT02927925) assessing the safety and efficacy of daratumumab, a suboptimal overall response rate was seen in R/R NKTCL patients. One patient, whose tumors did not express CD38, responded to treatment, suggesting that the immunomodulatory activities of daratumumab may be sufficient to confer clinical benefit. To understand the suboptimal response rate and short duration of response, we investigated the immune profile of NKTCL patients from NKT2001 in the context of daratumumab anti-tumor activity. Tumor tissue and whole blood were, respectively, analyzed for CD38 expression and patient immune landscapes, which were assessed via cytometry by time-of-flight (CyTOF), multiparameter flow cytometry (MPFC), clonal sequencing, and plasma Epstein-Barr virus (EBV)-DNA level measurements. Changes observed in the immune profiles of NKTCL patients from NKT2001, including differences in B and T cell populations between responders and nonresponders, suggest that modulation of the immune environment is crucial for daratumumab anti-tumor activities in NKTCL. In conclusion, these findings highlight that the clinical benefit of daratumumab in NKTCL may be enriched by B/T cell-related biomarkers.
Assuntos
Anticorpos Monoclonais , Linfoma Extranodal de Células T-NK , Humanos , Anticorpos Monoclonais/uso terapêutico , Linfoma Extranodal de Células T-NK/tratamento farmacológico , Linfoma Extranodal de Células T-NK/imunologia , Masculino , Feminino , ADP-Ribosil Ciclase 1 , Pessoa de Meia-Idade , Idoso , Adulto , Glicoproteínas de MembranaRESUMO
In recent years, graphitic carbon nitride (g-C3N4) has attracted considerable attention because it includes earth-abundant carbon and nitrogen elements and exhibits good chemical and thermal stability owing to the strong covalent interaction in its conjugated layer structure. However, bulk g-C3N4 has some disadvantages of low specific surface area, poor light absorption, rapid recombination of photogenerated charge carriers, and insufficient active sites, which hinder its practical applications. In this study, we design and synthesize potassium single-atom (K SAs)-doped g-C3N4 porous nanosheets (CM-KX, where X represents the mass of KHP added) via supramolecular self-assembling and chemical cross-linking copolymerization strategies. The results show that the utilization of supramolecules as precursors can produce g-C3N4 nanosheets with reduced thickness, increased surface area, and abundant mesopores. In addition, the intercalation of K atoms within the g-C3N4 nitrogen pots through the formation of K-N bonds results in the reduction of the band gap and expansion of the visible-light absorption range. The optimized K-doped CM-K12 nanosheets achieve a specific surface area of 127 m2 g-1, which is 11.4 times larger than that of the pristine g-C3N4 nanosheets. Furthermore, the optimal CM-K12 sample exhibits the maximum H2 production rate of 127.78 µmol h-1 under visible light (λ ≥ 420 nm), which is nearly 23 times higher than that of bare g-C3N4. This significant improvement of photocatalytic activity is attributed to the synergistic effects of the mesoporous structure and K SAs doping, which effectively increase the specific surface area, improve the visible-light absorption capacity, and facilitate the separation and transfer of photogenerated electron-hole pairs. Besides, the optimal sample shows good chemical stability for 20 h in the recycling experiments. Density functional theory calculations confirm that the introduction of K SAs significantly boosts the adsorption energy for water and decreases the activation energy barrier for the reduction of water to hydrogen.
RESUMO
Two yeast strains, designated as 19-39-3 and 19-40-2, obtained from the fruiting bodies of Trametes versicolor and Marasmius siccus collected in Yunwu Mountain Forest Park, PR China, have been identified as representing a novel asexual ascomycetous yeast species. From the results of phylogenetic analyses of the sequences of the D1/D2 domains of the large subunit (LSU) rRNA, small subunit (SSU) rRNA and translation elongation factor 1-α (TEF1) genes, it was determined that these strains represent a member of the genus Wickerhamomyces, with Wickerhamomyces alni and Candida ulmi as the closest relatives. The novel species exhibited 6.6 and 6.7% differences in the D1/D2 domains compared with W. alni and C. ulmi, respectively. Additionally, distinct biochemical and physiological differences were observed between the novel species and its related counterparts. No sexual reproduction was observed in these strains, leading to the proposal of the name Wickerhamomyces corioli f.a., sp. nov. for this newly discovered species.
Assuntos
Agaricales , Saccharomycetales , Filogenia , DNA Espaçador Ribossômico/genética , Agaricales/genética , Trametes/genética , Análise de Sequência de DNA , Composição de Bases , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Saccharomycetales/genética , DNA Fúngico/genética , Técnicas de Tipagem MicológicaRESUMO
Species of Malassezia are lipid-dependent yeasts and integral components of the skin microbiome. Most of the currently known species are isolated from mammals. However, the presence and distribution of Malassezia yeasts on the skin of avian species have not been fully understood or elucidated. During a survey on the occurrence of Malassezia species in chickens, 23 Malassezia strains isolated from the healthy skins of chickens may represent two candidate new species of this genus based on the sequence analysis of the internal transcribed spacer (ITS) (including 5.8S rRNA) and the D1/D2 domains of 26S rRNA. The combined ITS and D1/D2 phylogenetic analysis showed that those two candidate new species were closely related to Malassezia slooffiae, and differed from the type of M. slooffiae by 51-62 nucleotides in the ITS region and four nucleotides in the D1/D2 domains, respectively. Based on the phylogenetic analysis and the phenotypic comparison, we propose a new species, named Malassezia gallinae sp. nov., to include the 21 isolated strains.
Malassezia are lipophilic yeasts. Few species were isolated from birds, especially from poultry. We described a new Malassezia species with 21 strains isolated from chicken skins. This study revealed that chickens are normal hosts of Malassezia.
RESUMO
OBJECTIVES: To systematically review published evidence on cancer drug wastage and the effectiveness of mitigation methods. METHODS: Search keywords for Scopus, PubMed, and EMBASE were developed using the Pearl Growing technique. Relevant articles were identified in a two-step process: first based on titles/abstracts, then on full article reviews. Among the identified English peer-reviewed articles, those considering adults ≥18 years and relevant cancer drug wastage outcomes were included. Key concepts and measures for drug wastage and its mitigation were tabulated. Trends in publication numbers were analyzed using Mann-Kendall tests. Costs were converted first to 2024 local currencies using country-wise consumer price indexes, and then to 2024 USD using exchange rates. RESULTS: Among 6,298 unique articles, 94 met the inclusion criteria. Seventy-four (79%) of these were published since 2015, highlighting increasing attention to cancer drug wastage. Twenty-three articles (24%) explicitly reported drug wastage amounts, whereas fifty-two articles (55%) considered the mitigation methods. Most articles focused on high-income countries (n=67), single hospital settings (n=45), and retrospective study designs (n=55). Wastage mitigation techniques included vial-sharing (n=21), dose-rounding (n=17), closed-system transfer device (n=9), centralized drug preparation (n=7), and vial size optimization (n=7). A trend towards higher median wastage cost was evident in US settings ($135.35/patient-month) compared to other countries ($37.71/patient-month)), while mitigation methods across countries were not statistically significant. CONCLUSIONS: High cancer drug costs highlight the importance of minimizing drug wastage to reduce healthcare expenditure. Our review demonstrates that wastage varies by healthcare setting and mitigation technique. Future studies would benefit from reporting standards for cancer drug wastage that include reporting wastage (both in mg and cost, preferably in terms of Purchase Power Parity), as well as cohort size, considered vial sizes, considered dosages, and employed mitigation methods separately for each drug. This approach would account for variability in cancer drug wastage and help identify optimal mitigation practices tailored to the health system context.
RESUMO
In this work, a novel organodiphosphate-containing inorganic-organic hybrid polyoxoniobate (PONb) ring {(PO3CH2CH2PO3H)4Nb8O16}4- (Nb8P8) has been achieved by a one-pot hydrothermal method. The ring is constructed from a tetragonal {Nb8O36} motif and four {PO3CH2CH2PO3H} ligands. Interestingly, Nb8P8 can be joined together via K-H2O clusters {K2(H2O)4(OH)2} to form one-dimensional chains {[K2(H2O)4(OH)2]Nb8P8}n and further linked by {Cu(en)2}2+ (en = ethylenediamine) complexes, resulting in a three-dimensional supramolecular framework {[Cu(en)2]2[K2(H2O)4(OH)2]Nb8P8}·3en·H2O (1). 1 exhibits good chemical and thermal stability and has a high water vapor adsorption capacity of ≤224 cm3 g-1 (22.71 mol·mol-1) at 298 K, outperforming most of the known polyoxometalate-based materials. Impedance measurements prove that 1 can transfer protons with moderate conductivity. This study not only contributes to the structural diversity of organodiphosphate-containing PONbs and PONb rings but also provides a reference for the development of PONb-based materials with unique performance.
RESUMO
This study presents a green and practical visible-light-induced photosensitizer-free decarbonylative Minisci-type reaction using aldehydes as alkyl radical precursors. The photocatalytic system exhibits a broad substrate scope and synthetically useful yields. Mechanistic experiments revealed that alkyl radicals could be generated through auto-oxidation of aldehydes under irradiation, which is a mild and effective method for achieving late-stage functionalization of N-heteroarenes. Some biologically active N-heteroarenes could be alkylated using this photocatalytic system smoothly.
RESUMO
AIMS: A few studies have reported the effect and safety of pulsed field ablation (PFA) catheters for ablating atrial fibrillation (AF), which were mainly based on basket-shaped or flower-shaped designs. However, the clinical application of a circular-shaped multi-electrode catheter with magnetic sensors is very limited. To study the efficacy and safety of a PFA system in patients with paroxysmal AF using a circular-shaped multi-electrode catheter equipped with magnetic sensors for pulmonary vein isolation (PVI). METHODS AND RESULTS: A novel proprietary bipolar PFA system was used for PVI, which utilized a circular-shaped multi-electrode catheter with magnetic sensors and allowed for three-dimensional model reconstruction, mapping, and ablation in one map. To evaluate the efficacy, efficiency, and safety of this PFA system, a prospective, multi-centre, single-armed, pre-market clinical study was performed. From July 2021 to December 2022, 151 patients with paroxysmal AF were included and underwent PVI. The study examined procedure time, immediate success rate, procedural success rate at 12 months, and relevant complications. In all 151 patients, all the pulmonary veins were acutely isolated using the studied system. Pulsed field ablation delivery was 78.4 ± 41.8 times and 31.3 ± 16.7â ms per patient. Skin-to-skin procedure time was 74.2 ± 29.8â min, and fluoroscopy time was 13.1 ± 7.6â min. The initial 11 (7.2%) cases underwent procedures with deep sedation anaesthesia, and the following cases underwent local anaesthesia. In the initial 11 cases, 4 cases (36.4%) presented transient vagal responses, and the rest were all successfully preventatively treated with atropine injection and rapid fluid infusion. No severe complications were found during or after the procedure. During follow-up, 3 cases experienced atrial flutter, and 11 cases had AF recurrence. The estimated 12-month Kaplan-Meier of freedom from arrhythmia was 88.4%. CONCLUSION: The PFA system, comprised of a circular PFA catheter with magnetic sensors, could rapidly achieve PVI under three-dimensional guidance and demonstrated excellent safety with comparable effects.
Assuntos
Fibrilação Atrial , Ablação por Cateter , Veias Pulmonares , Humanos , Veias Pulmonares/cirurgia , Resultado do Tratamento , Estudos Prospectivos , Fibrilação Atrial/diagnóstico , Fibrilação Atrial/cirurgia , Catéteres , Ablação por Cateter/efeitos adversos , Ablação por Cateter/métodos , Fenômenos Magnéticos , RecidivaRESUMO
BACKGROUND: Buccal mucosa squamous cell carcinoma (BMSCC) is an aggressive disease. This study investigated the clinicopathological significance of tumor budding (TB), depth of invasion (DOI), and mode of invasion (MOI) on occult cervical metastasis (CM) of BMSCC. METHODS: Seventy-one cT1-2N0 BMSCC patients were included in this retrospective study. TB, DOI, MOI, and other clinicopathological features were reviewed. Risk factors for occult CM, locoregional recurrence-free survival (LRRFS), and overall survival (OS) were analyzed using logistic regression and Cox's proportional hazard models, respectively. RESULTS: Multivariate analysis with the logistic regression model revealed that MOI, DOI, and TB were significantly associated with occult CM in early-stage BMSCC after adjusting for variates. However, multivariate analysis with the Cox's proportional hazard model found only TB to be a prognostic factor for LRRFS (hazard ratio 15.03, 95% confidence interval [CI] 1.94-116.66; p = 0.01; trend test p = 0.03). No significant association was found between MOI, DOI, or TB and OS. CONCLUSIONS: The optimal predictor of occult CM and prognosis of early-stage BMSCC is TB, which may assist clinicians in identifying patients at high risk of cervical metastasis.
Assuntos
Carcinoma de Células Escamosas , Mucosa Bucal , Invasividade Neoplásica , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Carcinoma de Células Escamosas/secundário , Carcinoma de Células Escamosas/patologia , Idoso , Mucosa Bucal/patologia , Adulto , Neoplasias Bucais/patologia , Estadiamento de Neoplasias , Idoso de 80 Anos ou mais , Fatores de Risco , Modelos de Riscos Proporcionais , Prognóstico , Metástase Linfática/patologiaRESUMO
In this work, we rationally designed and synthesized two novel triazene-amonafide derivatives 2-(2-(diisopropylamino)ethyl)-5-(3,3-dimethyltriaz-1-en-1-yl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (D-11) and 5-(3,3-diethyltriaz-1-en-1-yl)-2-(2-(diisopropylamino)ethyl)-1H-benzo[de]isoquinoline-1,3(2H)-dione (D-12) as potential antitumor agents. The DNA damage induced by the intercalation mode of D-11 (D-12) towards DNA was electrochemically detected through the construction of efficient biosensors. The consecutive processes of reversible redox of naphthylimide ring and irreversible oxidation of triazene moiety were elucidated on the surface of glassy carbon electrode (GCE) by CV, SWV, and DPV methods. Electrochemical biosensors were obtained through the immobilization of ctDNA, G-quadruplexes, poly(dG), and poly(dA), respectively, on the clean surface of GCE. After the incubation of biosensors with D-11 or D-12, the peaks of dGuo and dAdo decreased prominently, and the peak of 8-oxoGua appeared at +0.50 V, suggesting that the interaction between D-11 (D-12) and DNA could result in the oxidative damage of guanine. Unexpected, the as-prepared DNA biosensor possessed satisfactory anti-interference property and good practicability in real samples. UV-vis and fluorescence spectra, and gel electrophoresis assays were employed to further confirm the intercalation mode of D-11 (D-12) towards DNA base pairs. Moreover, D-11 was proved to exhibit stronger anti-proliferation activity than mitionafide and amonafide against both A549 and HeLa cell lines.