Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 95(39): 14736-14745, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37737121

RESUMO

Easy-to-use, reliable, and real-time methods for detecting heavy metal ion contamination are urgently required, which is a primary concern for water pollution control and human health. However, present methods for this aim are still unable to achieve simultaneous multianalysis for complex real sample detection. Herein, an intellectualized vision-based single-nanoparticle Raman imaging strategy combined with ion-responsive functional nucleic acids (FNAs) was proposed to address these issues. We reported a correspondence between the concentration of the analytes and the density of particles (DOP) of specifically captured nanoparticles to achieve sensitive detection and simultaneous multianalysis of heavy metal ions. The specific detection of Pb2+ (Hg2+) was obtained with a detection linear range from 100 pM to 100 nM (from 500 fM to 100 nM) and limit of detections low to 1 pM (100 fM), with the advantages of good specificity, excellent homogeneity, and reproducibility. Furthermore, the differentiation of different heavy metal ions (Pb2+/Hg2+) was achieved, i.e., the simultaneous multianalysis, based on Raman imaging of the single particle and intelligent machine vision method. Finally, the Raman imaging assay was utilized for real sample analysis, and it provided a powerful and reliable tool for detecting trace Pb2+/Hg2+ in real water samples and facilitated the portable on-site monitoring of heavy metal ions.

2.
Nat Commun ; 15(1): 7140, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39164320

RESUMO

C-C coupling is of utmost importance in the electrocatalytic reduction of CO2, as it governs the selectivity of diverse product formation. Nevertheless, the difficulties to directly observe C-C coupling pathways at a specific nanocavity hinder the advances in catalysts and electrolyzer design for efficient high-value hydrocarbon production. Here we develop a nano-confined Raman technology to elucidate the influence of the local electric field on the evolution of C-C coupling intermediates. Through precise adjustments to the Debye length in nanocavities of a copper catalyst, the overlapping of electrical double layers drives a transition in the C-C coupling pathway at a specific nanocavity from *CHO-*CO coupling to the direct dimerization of *CO species. Experimental evidence and simulations validate that a reduced potential drop across the compact layer promotes a higher yield of CO and promotes the direct dimerization of *CO species. Our findings provide insights for the development of highly selective catalyst materials tailored to promote specific products.

3.
J Colloid Interface Sci ; 586: 404-411, 2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33183754

RESUMO

Different from traditional methods, ultrasound sonochemical synthesis can create very special reaction conditions by virtue of the effects of acoustic cavitation. The localized spots in the medium liquids can reach the temperature of ~5000 K, and the pressure of ~1000 bar with the treatment of ultrasonic irradiation. The extreme conditions make it possible to fabricate a series of nanostructured materials with peculiar properties. Herein, we successfully prepared a unique amorphous composite of Sb2S3-graphene via sonochemical method at room temperature. Thanks to the opening frame of ion diffusion channels and higher reversibility in thermodynamics, the amorphous composite displayed superior electrochemical properties in comparison with the crystalline counterpart for sodium-ion batteries. Specifically, the amorphous Sb2S3-graphene composite delivered a first discharge capacity of 1867.1 mAh g-1 and a high reversible capacity of over 880 mAh g-1 after 50 cycles. The nanostructured materials synthesized by ultrasound sonochemical method with unique properties have well prospect in the field of energy storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA