Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 8(12): e12468, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36593854

RESUMO

Objective: This study aimed to address the status, role, and mechanism of sympathetic nerve infiltration in the progression of stomach adenocarcinoma (STAD). Methods: Sympathetic nerve and its neurotransmitter NE, ß-ARs, and associated signaling molecules in the STAD tissues and the adjacent tissues from 46 STAD patients were examined using immunostaining, HPLC, and western blotting. The effects and mechanisms of ß2-AR activation on the proliferation, migration and invasion of AGS and SGC-7901 gastric cancer (GC) cell lines were examined using CCK-8, transwell, and western blotting assays. Correlations between genes and STAD survival were analyzed using bioinformatics. Results: Striking sympathetic nerve infiltration, elevations of NGF, TrkA, GAP43, TH, S100, NE, ß2-AR, YKL-40, syndecan-1, MMP9, CD206, and CD31 were observed in the STAD tissues compared to the adjacent tissues. Activation of ß2-AR in the two GC cell lines significantly amplified the expressions of NGF, YKL-40, MMP9, syndecan-1, p-STAT3 and p-ERK, and increased GC cell proliferation, migration and invasion. Bioinformatic analyses revealed positive correlations of NGF, ß2-AR, syndecan-1, and macrophage infiltration, respectively, with low survival of STAD, of ß2-AR respectively with STAT3, ERK1/2 (MAPK1/3), YKL-40, MMP9, and syndecan-1, and of YKL-40 with MMP9. Conclusion: Sympathetic nerves significantly infiltrated into human STAD tissues as a result of high NGF and TrkA expressions; elevated NE led to overactivation of ß2-AR-STAT3/ERK-YKL-40 signaling pathway, and finally caused cancer cell growth and invasion, M2 macrophage infiltration, angiogenesis, matrix degradation and STAD metastasis and progression.

2.
J Oncol ; 2021: 6670834, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33542731

RESUMO

Precision medicine for gastric cancer (GC) is still an unsolved issue, because most available target drugs are not specifically designed for GC. Exploring novel signaling molecules with target value for GC is in urgent need. This study aimed to reveal that interleukin-2 receptor subunit gamma (IL2RG) is such a key molecule in human GC progression. GC tissues and paracancerous gastric tissues were collected from 7 patients (5 males and 2 females) during tumor radical excision surgery. These tissues were used to identify the differentially expressed genes (DEGs) with RNA-seq and serial bioinformatics analyses including Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, gene expression profiling interactive analysis (GEPIA), and survival analysis. RT-qPCR and western blotting were performed to compare the mRNA and protein expression levels of IL2RG between GC tissues and adjacent normal gastric tissues as well as between GC cell line SGC-7901 and normal gastric epithelial cell line GES-1. Results showed striking elevations of IL2RG both in the mRNA and protein levels in GC tissues and human gastric cancer SGC-7901 cell line compared, respectively, with the adjacent normal gastric tissues and normal GES-1 cells, and higher IL2RG expression was associated with lower survival. Analyses on the GSE29272 and GSE15459 datasets from Gene Expression Omnibus verified that IL2RG was highly expressed in GC patients and was associated with poor overall survival. In addition, molecular docking showed that a small molecule, resatorvid (TAK 242), might be an inhibitor of IL2RG. We conclude that IL2RG is overexpressed in advanced GC and is associated with low survival. IL2RG may serve as a biomarker of GC progression and poor prognosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA