Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(10): 6409-6421, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38412558

RESUMO

Green ammonia (NH3), made by using renewable electricity to split nearly limitless nitrogen (N2) molecules, is a vital platform molecule and an ideal fuel to drive the sustainable development of human society without carbon dioxide emission. The NH3 electrosynthesis field currently faces the dilemma of low yield rate and efficiency; however, decoupling the overlapping issues of this area and providing guidelines for its development directions are not trivial because it involves complex reaction process and multidisciplinary entries (for example, electrochemistry, catalysis, interfaces, processes, etc.). In this Perspective, we introduce a classification scheme for NH3 electrosynthesis based on the reaction process, namely, direct (N2 reduction reaction) and indirect electrosynthesis (Li-mediated/plasma-enabled NH3 electrosynthesis). This categorization allows us to finely decouple the complicated reaction pathways and identify the specific rate-determining steps/bottleneck issues for each synthesis approach such as N2 activation, H2 evolution side reaction, solid-electrolyte interphase engineering, plasma process, etc. We then present a detailed overview of the latest progresses on solving these core issues in terms of the whole electrochemical system covering the electrocatalysts, electrodes, electrolytes, electrolyzers, etc. Finally, we discuss the research focuses and the promising strategies for the development of NH3 electrosynthesis in the future with a multiscale perspective of atomistic mechanisms, nanoscale electrocatalysts, microscale electrodes/interfaces, and macroscale electrolyzers/processes. It is expected that this Perspective will provide the readers with an in-depth understanding of the bottleneck issues and insightful guidance on designing the efficient NH3 electrosynthesis systems.

2.
Small ; 20(11): e2307349, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38105349

RESUMO

Co electroreduction of carbon dioxide and nitrate to synthesize urea provides an alternative strategy to high energy-consumption traditional methods. However, the complexity of the reaction mechanism and the high energy barrier of nitrate reduction result in a diminished production of urea. Herein, a convenient electrodeposition technique to prepare the FeOOH with low spin state iron that increases the yield rate of urea efficiently is employed. According to soft X-ray Absorption Spectroscopy and theoretical calculations, the unique configuration of low spin state iron as electron acceptors can effectively induce electron pair transfer from the occupied σ orbitals of intermediate * NO to empty d orbitals of iron. This σ→d donation mechanism leads to a reduction in the energy barrier associated with the rate-determining step (* NOOH→* NO + * OH), hence augmenting the urea generation. The low spin state iron presents a high urea yield rate of 512 µg h-1  cm-2 , representing approximately two times compared to the medium spin state iron. The key intermediates (* NH2 and * CO) in the formation of C─N bond are detected with in situ Fourier transform infrared spectroscopy. The coupling of * NH2 and * CO contributes to the formation of * CONH2 , which subsequently endures multi-step proton-coupled electron transfer to generate urea.

3.
J Prosthet Dent ; 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37003942

RESUMO

A digital workflow for fabricating a polyetherketoneketone (PEKK) periodontal splint is described. The antibacterial properties of PEKK and the precision and efficiency of digital technology led to the provision of a splint with no adverse effects on oral hygiene or periodontal maintenance during a 2-year follow-up.

4.
Small ; 18(7): e2103933, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34862712

RESUMO

Effective utilization of solar energy in battery systems is a promising solution to achieve sustainable and green development. In this work, a photoassisted Fe-air battery (PFAB) with two photoelectrodes of ZnO-TiO2 heterostructure and polyterthiophene (pTTh)-coated CuO (pTTh-CuO) grown on fluorine-doped tin oxide (FTO) is proposed. The band structure of semiconductors and the charge-transfer mechanism of heterostructure are studied. The electrochemical results show that the photogenerated electrons and holes play key roles in reducing the oxygen evolution reaction (OER)/oxygen reduction reaction (ORR) overpotential in the discharging and charging processes, respectively. The short-circuit current density, the open-circuit voltage, and the maximum power output of the PFAB can reach 34.28 mA cm-2 , 1.15 V, and 5.69 mW cm-2 upon illumination, respectively. The photoassisted Fe-air battery exhibits a low charge voltage of 0.64 V for ZnO-TiO2 as photoelectrode and a discharge voltage of 1.38 V for pTTh-CuO as a photoelectrode at 0.1 mA cm-2 .

5.
Small ; 18(7): e2105668, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34877809

RESUMO

Herein, a BiOCl hydrogel film electrode featuring excellent photocorrosion and regeneration properties acts as the anode to construct a novel type of smart solar-metal-air batteries (SMABs), which combines the characteristics of solar cells (direct photovoltaic conversion) and metal-air batteries (electric energy storage and release interacting with atmosphere). The cyclic photocorrosion processes between BiOCl (Bi3+ ) and Bi can simply be achieved by solar light illumination and standing in the dark. Upon illumination, the device takes open-circuit configuration to charge itself from the sunlight. Notably, in this system, the converted solar energy can be stored in the SMABs without the need of external assistance. In the discharging process in the dark, Bi0 spontaneously turns back to Bi3+ producing electrons to induce the oxygen reduction reaction. With an illumination of 15 min, the battery with an electrode area of 1 cm2 can be continuously discharged for ≈3000 s. Taking elemental Bi as the calculation object, the theoretical capacity of the SMABs is 384.75 mAh g-1 , showing its potential application in energy storage. This novel type of SMABs is developed based on the unique photocorrosive and self-oxidation reaction of BiOCl to achieve photochemical energy generation and storage.

6.
World J Gastroenterol ; 9(7): 1431-4, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12854135

RESUMO

AIM: To investigate the expression of NGF family and their receptors in gastric carcinoma and normal gastric mucosa, and to elucidate their effects on gastric carcinoma. METHODS: RNA of gastric cancer tissues and normal gastric tissues was respectively isolated and mRNA was purified. Probes of both mRNA reverse transcription product cDNAs labeled with alpha-(33)P dATP were respectively hybridized with Atlas Array membrane where NGF and their family genes were spotted on. Hybridized signal images were scanned on phosphor screen with ImageQuant 5.1 software after hybridization. Normalized values on spots were analyzed with ArrayVersion 5.0 software. Differential expression of NGF family and their receptors mRNA was confirmed between hybridized Atlas Array membranes of gastric cancer tissues and normal gastric mucosa, then their effects on gastric carcinoma were investigated. RESULTS: Hybridization signal images on Atlas Array membrane appeared in a lower level of nonspecific hybridization. Both of NGF family and their receptors Trk family mRNA were expressed in gastric cancer and normal gastric mucosa. But adversely up-regulated expression in other tissues and organs. NGF, BDGF, NT-3, NT-4/5, NT-6 and TrkA, B and C were down-regulated simultaneously in gastric carcinoma in comparison with normal gastric mucosa. Degrees of down-regulation in NGF family were greater than those in their receptors Trk family. Down-regulation of NT-3 and BDGF was the most significant, and TrkC down-regulation level was the lowest in receptors Trk family. CONCLUSION: Down-regulated expression of NGF family and their receptors Trk family mRNA in gastric cancer is confirmed. NGF family and their receptors Trk family probably play a unique role in gastric cancer cell apoptosis by a novel Ras or Raf signal transduction pathway. Their synchronous effects are closely associated with occurrence and development of gastric carcinoma induced by reduction of signal transduction of programmed cell death.


Assuntos
Carcinoma/genética , Fatores de Crescimento Neural/genética , Análise de Sequência com Séries de Oligonucleotídeos , Receptores de Fator de Crescimento Neural/genética , Neoplasias Gástricas/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Hibridização de Ácido Nucleico , RNA Mensageiro/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA