RESUMO
BACKGROUND: Thin endometrium (TE) is a common cause of female infertility in clinical practice. Platelet-rich Plasma (PRP) therapy becomes a novel treatment for thin endometrium; however, its clinical application remains controversial. This meta-analysis aims to evaluate the therapeutic effects of intrauterine autologous PRP infusion in women with thin endometrium through relevant randomized controlled trials (RCTs). METHODS: We systematically searched studies published in English from inception until June 2024 in databases such as PubMed, The Cochrane Library, Embase, Web of Science, and MEDLINE. Search terms included "Platelet-Rich Plasma," "thin endometrium," "endometrial thickness," "infertility," "pregnancy," "reproduction," and "adverse reactions". RCTs identified through the search were subjected to systematic review and meta-analysis, and data were analyzed using fixed-effects or random-effects models based on heterogeneity. RESULTS: Eight RCTs involving 678 patients with thin endometrium were included. Patients receiving PRP infusion demonstrated significantly superior outcomes compared to the control group in endometrial thickness (MD: 1.23, 95%CI: 0.87 to 1.59, P = 0.000), clinical pregnancy rate (RR: 2.04, 95%CI: 1.52 to 2.76, P = 0.000), live birth rate (RR: 2.46; 95%CI: 1.57 to 3.85, P = 0.000), cycle cancellation rate (RR: 0.46, 95%CI: 0.23 to 0.93, P = 0.000), and embryo implantation rate (RR: 2.71; 95%CI: 1.91 to 3.84, P = 0.000). There were no statistically significance in spontaneous abortion rate (RR: 0.85, 95%CI: 0.40 to 1.78, P = 0.659), chemical pregnancy rate (RR: 1.84, 95%CI: 0.72 to 4.72, P = 0.204) and endometrial vascular improvement rate (RR: 1.10; 95%CI: 0.89 to 1.38, P = 0.367) between the two groups. The limitations of this study includes that, we only included single lauguage for literature research, the sample size and heterogeneity which could cause criteria bias. CONCLUSION: Intrauterine PRP infusion may be an effective and safe treatment for women with thin endometrium. Further high-quality, large-sample, randomized controlled trials are needed to validate the reliability of our results. TRIAL REGISTRATION: The review protocol is registered on PROSPERO with registration number CRD42023490421, and no modifications were made to the information provided at registration.
Assuntos
Endométrio , Infertilidade Feminina , Plasma Rico em Plaquetas , Feminino , Humanos , Gravidez , Infertilidade Feminina/terapia , Nascido Vivo , Taxa de Gravidez , Ensaios Clínicos Controlados Aleatórios como Assunto , Resultado do TratamentoRESUMO
Objective: To evaluate the effectiveness and safety of pericapsular nerve group (PENG) block for hip fracture surgery under spinal anesthesia. Methods: This meta-analysis was registered on INPLASY (INPLASY202270005). PubMed, Embase, Cochrane, CNKI, and Wanfang databases were searched to collect the randomized controlled trials of the PENG block applied to hip fracture surgery in the setting of spinal anesthesia, with the search period from inception to 1 May 2023. Two independent researchers gradually screened the literature, evaluated the quality, extracted the data, and eventually pooled data using RevMan 5.4. Results: Fifteen articles with 890 patients were enrolled. The combined results showed that the PENG block reduced pain scores during position placement (SMD = -0.35; 95% CI [-0.67, 0.02]; P=0.04; I2 = 0%). Subgroup analyses showed that compared to the unblocked group, the PENG block reduced pain scores at 12 h, 24 h, and 48 h postoperatively. The incidence of postoperative hypokinesia was reduced (RR = 0.11; 95% CI [0.01, 0.86]; P=0.04; I2 = 0.00%). The time to first walking was advanced (SMD = -0.90; 95% CI [-1.17, 0.63]; P < 0.00001; I2 = 0%). Conclusion: The PENG block can reduce postoperative pain and pain during spinal anesthesia positioning, which is helpful to improve the operability and comfort of spinal anesthesia and facilitate postoperative muscle strength recovery and early activity.
Assuntos
Raquianestesia , Fraturas do Quadril , Humanos , Raquianestesia/efeitos adversos , Nervo Femoral , Fraturas do Quadril/cirurgia , Dor Pós-Operatória/prevenção & controle , Bases de Dados FactuaisRESUMO
Purpose: In this study, we aimed to determine the transmission pattern of multidrug-resistant tuberculosis (MDR-TB) isolates circulating in Jiangxi Province with whole-genome sequencing (WGS). In addition, we also sought to describe mutational resistome of MDR-TB isolates. Patients and Methods: A total of 115 MDR-TB isolates determined by the phenotypic proportion method of drug susceptibility testing between January 2018 and December 2022 from provincial drug surveillance (DRS) in Jiangxi were included in our analysis. The demographic data and treatment history were extracted from the National TB Registry System. WGS was used to analyze the genotypic characteristics of drug resistance and transmissions. Results: About 62.6% of MDR-TB strains were isolated from cases that received previous anti-tuberculosis treatment. According to the WGS results, 96.5% were genotypic MDR-TB, and more than half of MDR-TB isolates tested were also resistant to streptomycin (59.1%), ethambutol (56.5%), and fluroquinolones (53.0%), while resistance to cycloserine and linezolid was lowest, only in two (1.7%) and one (0.9%) isolate, respectively. Ser450Leu in rpoB (57.9%), Ser315Thr in katG (74.1%), Met306Val in embB (40.0%), Lys43Arg in rpsL (75.0%), Ala90Val in gyrA (32.8%) were predominant mutant types among the rifampin-, isoniazid-, ethambutol-, streptomycin-, fluoroquinolones-resistant isolates, respectively. Lineage 2 (East Asian genotype) occurred at the highest frequency with 97 cases (84.3%), followed by lineage 4 (Euro-American genotype) with 18 cases (15.7%). Additionally, 5 clusters consisting of 10 isolates were identified in the present study, demonstrating a clustering rate of 8.7%. Conclusion: MDR/Rifampicin-Resistant (RR)-TB epidemic in this region is driven by lineage 2 clade that also show higher resistance to other anti-tuberculosis drugs. Lower cluster rates compared with a relatively higher proportion of new MDR-TB cases indicate that a considerable number of MDR-TB cases remain undiagnosed.
RESUMO
Tuberculosis (TB) is an infectious disease that seriously affects human health. Until now, the only anti-TB vaccine approved for use is the live attenuated Mycobacterium bovis (M. bovis) vaccine - BCG vaccine, but its protective efficacy is relatively low and does not provide satisfactory protection against TB in adults. Therefore, there is an urgent need for more effective vaccines to reduce the global TB epidemic. In this study, ESAT-6, CFP-10, two antigens full-length and the T-cell epitope polypeptide antigen of PstS1, named nPstS1, were selected to form one multi-component protein antigens, named ECP001, which include two types, one is a mixed protein antigen named ECP001m, the other is a fusion expression protein antigen named ECP001f, as candidates for protein subunit vaccines. were prepared by constructing one novel subunit vaccine by mixing or fusing the three proteins and combining them with aluminum hydroxide adjuvant, and the immunogenicity and protective properties of the vaccine was evaluated in mice. The results showed that ECP001 stimulated mice to produce high titre levels of IgG, IgG1 and IgG2a antibodies; meanwhile, high levels of IFN-γ and a broad range of specific cytokines were secreted by mouse splenocytes; in addition, ECP001 inhibited the proliferation of Mycobacterium tuberculosis in vitro with a capacity comparable to that of BCG. It can be concluded that ECP001 is a novel effective multicomponent subunit vaccine candidate with potential as BCG Initial Immunisation-ECP001 Booster Immunisation or therapeutic vaccine for M. tuberculosis infection.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Animais , Camundongos , Vacina BCG , Epitopos de Linfócito T , Antígenos de Bactérias , Tuberculose/prevenção & controle , Citocinas/metabolismo , Vacinas de Subunidades AntigênicasRESUMO
Tuberculosis (TB) remains a serious global health problem. Despite the widespread use of the Mycobacterium bovis bacillus Calmette-Guerin (BCG) vaccine, the primary factor for the TB pandemic and deaths is adult TB, which mainly result from endogenous reactivation of latent Mycobacterium tuberculosis (MTB) infection. Improved new TB vaccines with eligible safety and long-lasting protective efficacy remains a crucial step toward the prevention and control of TB. In this study, five immunodominant antigens, including three early secreted antigens and two latency associated antigens, were used to construct a single recombinant fusion protein (Epera013f) and a protein mixture (Epera013m). When formulated with aluminum adjuvant, the two subunit vaccines Epera013m and Epera013f were administered to BALB/c mice. The humoral immune responses, cellular responses and MTB growth inhibiting capacity elicited after Epera013m and Epera013f immunization were analyzed. In the present study, we demonstrated that both the Epera013f and Epera013m were capable of inducing a considerable immune response and protective efficacy against H37Rv infection compared with BCG groups. In addition, Epera013f generated a more comprehensive and balanced immune status, including Th1, Th2 and innate immune response, over Epera013f and BCG. The multistage antigen complex Epera013f possesses considerable immunogenicity and protective efficacy against MTB infection ex vivo indicating its potential and promising applications in further TB vaccine development.
RESUMO
Background: Ethionamide (ETH), a structural analogue of isoniazid (INH), is used for treating multidrug-resistant tuberculosis (MDR-TB). Due to the common target InhA, INH and ETH showed cross-resistance in M. tuberculosis. This study aimed to explore the INH and ETH resistant profiles and genetic mutations conferring independent INH- or ETH-resistance and INH-ETH cross-resistance in M. tuberculosis circulating in south of Xinjiang, China. Methods: From Sep 2017 to Dec 2018, 312 isolates were included using drug susceptibility testing (DST), spoligotyping, and whole genome sequencing (WGS) to analyze the resistance characteristics for INH and/or ETH. Results: Among the 312 isolates, 185 (58.3%) and 127 (40.7%) belonged to the Beijing family and non-Beijing family, respectively; 90 (28.9%) were INH-resistant (INHR) with mutation rates of 74.4% in katG, 13.3% in inhA and its promoter, 11.1% in ahpC and its upstream region, 2.2% in ndh, 0.0% in mshA, whilst 34 (10.9%) were ETH-resistant (ETHR) with mutation rates of 38.2% in ethA, 26.2% in inhA and its promoter, and 5.9% in ndh, 0.0% in ethR or mshA; and 25 (8.0%) were INH-ETH co-resistant (INHRETHR) with mutation rates of 40.0% in inhA and its promoter, and 8% in ndh. katG mutants tended to display high-level resistant to INH; and more inhA and its promoter mutants showed low-level of INH and ETH resistance. The optimal gene combinations by WGS for the prediction of INHR, ETHR, and INHRETHR were, respectively, katG+inhA and its promoter (sensitivity: 81.11%, specificity: 90.54%), ethA+inhA and its promoter+ndh (sensitivity: 61.76%, specificity: 76.62%), and inhA and its promoter+ndh (sensitivity: 48.00%, specificity: 97.65%). Conclusion: This study revealed the high diversity of genetic mutations conferring INH and/or ETH resistance among M. tuberculosis isolates, which would facilitate the study on INHR and/or ETHR mechanisms and provide clues for choosing ETH for MDR treatment and molecular DST methods in south of Xinjiang, China.
RESUMO
Bacillus Calmette-Guérin (BCG) is the only widely used prophylactic tuberculosis (TB) vaccine that can prevent severe TB in infants. However, it provides poor protection in adults, and therefore, there is ongoing research into new TB vaccines and immunization strategies with more durable immune effects. The recombinant BCG and BCG prime-protein booster are two important vaccine strategies that have recently been developed based on BCG and could improve immune responses. In this study, three immune strategies based on four protective antigens, namely, ESAT-6, CFP-10, nPPE18, and nPstS1, were applied to construct recombinant rBCG-EPCP009, EPCP009 subunit protein, and BCG prime-EPCP009 booster vaccine candidates. The short- and long-term immune effects after vaccination in Balb/c mice were evaluated based on humoral immunity, cellular immunity, and the ability of spleen cells to inhibit in vitro mycobacterial growth. At 8 and 12 weeks after the initial immunization, splenocytes from mice inoculated with the BCG prime-EPCP009 protein booster secreted higher levels of PPD- and EPCP009-specific IFN-γ, IL-2, TNF-α, IL-17, GM-CSF, and IL-12 and had a higher IFN-γ+CD4+ TEM:IL-2+CD8+ TCM cell ratio than splenocytes from mice inoculated with the rBCG-EPCP009 and EPCP009 proteins. In addition, the EPCPE009-specific IgG2a/IgG1 ratio was slightly higher in the BCG prime-EPCP009 protein booster group than in the other two groups. The in vitro mycobacterial inhibition assay showed that the splenocytes of mice from the BCG prime-EPCP009 protein booster group exhibited stronger inhibition of Mycobacterium tuberculosis (M. tuberculosis) growth than the splenocytes of mice from the other two groups. These results indicate that the BCG prime-EPCP009 protein booster exhibited superior immunogenicity and M. tuberculosis growth inhibition to the parental BCG, rBCG-EPCP009, and EPCP009 proteins under in vitro conditions. Thus, the BCG prime-EPCP009 protein booster may be important for the development of a more effective adult TB vaccine.
RESUMO
Temporal lobe epilepsy (TLE) is a common kind of refractory epilepsy. More than 30% TLE patients were multi-drug resistant. Some patients may even develop into status epilepticus (SE) because of failing to control seizures. Thus, one of the avid goals for anti-epileptic drug development is to discover novel potential compounds to treat TLE or even SE. Crocin, an effective component of Crocus sativus L., has been applied in several epileptogenic models to test its anti-epileptic effect. However, it is still controversial and its effect on TLE remains unclear. Therefore, we investigated the effects of crocin on epileptogenesis, generalized seizures (GS) in hippocampal rapid electrical kindling model as well as SE and spotaneous recurrent seizure (SRS) in pilocarpine-induced TLE model in ICR mice in this study. The results showed that seizure stages and cumulative afterdischarge duration were significantly depressed by crocin (20 and 50 mg/kg) during hippocampal rapid kindling acquisition. And crocin (100 mg/kg) significantly reduced the incidence of GS and average seizure stages in fully kindled animals. In pilocarpine-induced TLE model, the latency of SE was significantly prolonged and the mortality of SE was significantly decreased by crocin (100 mg/kg), which can also significantly suppress the number of SRS. The underlying mechanism of crocin may be involved in the protection of neurons, the decrease of tumor necrosis factor-α in the hippocampus and the increase of brain derived neurotrophic factor in the cortex. In conclusion, crocin may be a potential and promising anti-epileptic compound for treatment of TLE.
RESUMO
Proteolysis occurs extensively during postmortem aging, enzymatic tenderization and fermentation of meat products, whereas less is understood regarding how proteolysis affects meat flavor. Myofibrillar proteins (MP) were extracted from beef longissimus dorsi muscle and subsequently treated with three commercial proteases. The effect of proteolysis on the interactions between the treated MP and butyraldehyde, 2-pentanone, octanal and 2-octanone was investigated. The progress of proteolysis increased the degree of hydrolysis (DH) and the surface hydrophobicity but decreased the turbidity and particle size. Fluorescence-quenching analysis results indicated that the enzymatic treatment generally increased the quenching constant (Ksv) between the treated MP and ketones but decreased the Ksv between the treated MP and aldehydes, and the papain treatment changed the Ksv value to a larger degree than treatment with proteinase K and bromelain. The adsorption assay showed that the proteinase K treatment largely increased the adsorption capacity of the MP to octanal (by 15.8−19.3%), whereas the bromelain treatment significantly reduced the adsorption capacity of the treated MP to butyraldehyde (by 6.0−7.9%) and 2-pentanone (by 9.7−11.9%). A correlation analysis demonstrated a strong positive correlation (0.859, p < 0.05) between the DH of the MP and the adsorption ability of the treated MP to octanal. This study highlighted the significant but complex influence of proteolysis on MP binding capacity to flavor compounds.