Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Yi Chuan ; 46(9): 716-726, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39275871

RESUMO

Targeted precise point editing and knock-in can be achieved by homology-directed repair(HDR) based gene editing strategies in mammalian cells. However, the inefficiency of HDR strategies seriously restricts their application in precision medicine and molecular design breeding. In view of the problem that exogenous donor DNA cannot be efficiently recruited autonomously at double-stranded breaks(DSBs) when using HDR strategies for gene editing, the concept of donor adapting system(DAS) was proposed and the CRISPR/Cas9-Gal4BD DAS was developed previously. Due to the large size of SpCas9 protein, its fusion with the Gal4BD adaptor is inconvenient for protein expression, virus vector packaging and in vivo delivery. In this study, two novel CRISPR/Gal4BD-SlugCas9 and CRISPR/Gal4BD-AsCas12a DASs were further developed, using two miniaturized Cas proteins, namely SlugCas9-HF derived from Staphylococcus lugdunensis and AsCas12a derived from Acidaminococcus sp. Firstly, the SSA reporter assay was used to assess the targeting activity of different Cas-Gal4BD fusions, and the results showed that the fusion of Gal4BD with SlugCas9 and AsCas12a N-terminals had minimal distraction on their activities. Secondly, the HDR efficiency reporter assay was conducted for the functional verification of the two DASs and the corresponding donor patterns were optimized simultaneously. The results demonstrated that the fusion of the Gal4BD adaptor binding sequence at the 5'-end of intent dsDNA template (BS-dsDNA) was better for the CRISPR/Gal4BD-AsCas12a DAS, while for the CRISPR/Gal4BD-SlugCas9 DAS, the dsDNA-BS donor pattern was recommended. Finally, CRISPR/Gal4BD-SlugCas9 DAS was used to achieve gene editing efficiency of 24%, 37% and 31% respectively for EMX1, NUDT5 and AAVS1 gene loci in HEK293T cells, which was significantly increased compared with the controls. In conclusion, this study provides a reference for the subsequent optimization of the donor adapting systems, and expands the gene editing technical toolbox for the researches on animal molecular design breeding.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Edição de Genes/métodos , Humanos , Células HEK293
2.
Yi Chuan ; 44(8): 708-719, 2022 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-36384669

RESUMO

The fast-rising CRISPR-derived gene editing technologies has been widely used in the fields of life science and biomedicine, as well as plant and animal breeding. However, the efficiency of homology-directed repair (HDR), an important strategy for gene knock-in and base editing, remains to be improved. In this study, we came up with the term Donor Adapting System (DAS) to summarize those CRISPR/Cas9 systems modified with adaptor for driving aptamer-fused donor DNA. A set of CRISPR/Cas9-Gal4BD DAS was designed in our study. In this system, Gal4 DNA binding domain (Gal4BD) is used as adaptor to fuse with Cas9 protein, and Gal4 binding sequence (Gal4BS) is used as aptamer to bind to the double-stranded DNA (dsDNA) donor, in order to improve the HDR efficiency. Preliminary results from the HEK293T-HDR.GFP reporter cell line show that the HDR editing efficiency could be improved up to 2-4 times when donor homologous arms under certain length (100-60 bp). Further optimization results showed that the choice of fusion port and fusion linker would affect the expression and activity of Cas9, while the Cas9-Gal4BD fusion with a GGS5 linker was the prior choice. In addition, the HDR efficiency was likely dependent on the aptamer-dsDNA donor design, and single Gal4BD binding sequence (BS) addition to the 5'-end of intent dsDNA template was suggested. Finally, we achieved enhanced HDR editing on the endogenous AAVS1 and EMX1 sites by using the CRISPR/Gal4BD-Cas9 DAS, which we believe can be applied to facilitate animal molecular design breeding in the future.


Assuntos
Sistemas CRISPR-Cas , Reparo de DNA por Recombinação , Animais , Humanos , DNA , Células HEK293
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA