RESUMO
Neurosteroids are endogenous modulators of neuronal excitability and nervous system development and are being developed as anesthetic agents and treatments for psychiatric diseases. While gamma amino-butyric acid Type A (GABAA) receptors are the primary molecular targets of neurosteroid action, the structural details of neurosteroid binding to these proteins remain ill defined. We synthesized neurosteroid analogue photolabeling reagents in which the photolabeling groups were placed at three positions around the neurosteroid ring structure, enabling identification of binding sites and mapping of neurosteroid orientation within these sites. Using middle-down mass spectrometry (MS), we identified three clusters of photolabeled residues representing three distinct neurosteroid binding sites in the human α1ß3 GABAA receptor. Novel intrasubunit binding sites were identified within the transmembrane helical bundles of both the α1 (labeled residues α1-N408, Y415) and ß3 (labeled residue ß3-Y442) subunits, adjacent to the extracellular domains (ECDs). An intersubunit site (labeled residues ß3-L294 and G308) in the interface between the ß3(+) and α1(-) subunits of the GABAA receptor pentamer was also identified. Computational docking studies of neurosteroid to the three sites predicted critical residues contributing to neurosteroid interaction with the GABAA receptors. Electrophysiological studies of receptors with mutations based on these predictions (α1-V227W, N408A/Y411F, and Q242L) indicate that both the α1 intrasubunit and ß3-α1 intersubunit sites are critical for neurosteroid action.
Assuntos
Proteínas de Membrana/metabolismo , Receptores de GABA/metabolismo , Animais , Sítios de Ligação , Linhagem Celular , Eletrofisiologia , Feminino , Citometria de Fluxo , Humanos , Espectrometria de Massas , Simulação de Acoplamento Molecular , Muscimol/metabolismo , Neurotransmissores/metabolismo , Oócitos/metabolismo , Xenopus laevisRESUMO
Oxysterols are oxidized derivatives of cholesterol that play regulatory roles in lipid biosynthesis and homeostasis. How oxysterol signaling coordinates different lipid classes such as sterols and triglycerides remains incompletely understood. Here, we show that 4ß-hydroxycholesterol (HC) (4ß-HC), a liver and serum abundant oxysterol of poorly defined functions, is a potent and selective inducer of the master lipogenic transcription factor, SREBP1c, but not the related steroidogenic transcription factor SREBP2. By correlating tracing of lipid synthesis with lipogenic gene expression profiling, we found that 4ß-HC acts as a putative agonist for the liver X receptor (LXR), a sterol sensor and transcriptional regulator previously linked to SREBP1c activation. Unique among the oxysterol agonists of the LXR, 4ß-HC induced expression of the lipogenic program downstream of SREBP1c and triggered de novo lipogenesis both in primary hepatocytes and in the mouse liver. In addition, 4ß-HC acted in parallel to insulin-PI3K-dependent signaling to stimulate triglyceride synthesis and lipid-droplet accumulation. Thus, 4ß-HC is an endogenous regulator of de novo lipogenesis through the LXR-SREBP1c axis.
Assuntos
Proteína de Ligação a Elemento Regulador de Esterol 1RESUMO
Hedgehog (HH) ligands, classical morphogens that pattern embryonic tissues in all animals, are covalently coupled to two lipids-a palmitoyl group at the N terminus and a cholesteroyl group at the C terminus. While the palmitoyl group binds and inactivates Patched 1 (PTCH1), the main receptor for HH ligands, the function of the cholesterol modification has remained mysterious. Using structural and biochemical studies, along with reassessment of previous cryo-electron microscopy structures, we find that the C-terminal cholesterol attached to Sonic hedgehog (Shh) binds the first extracellular domain of PTCH1 and promotes its inactivation, thus triggering HH signaling. Molecular dynamics simulations show that this interaction leads to the closure of a tunnel through PTCH1 that serves as the putative conduit for sterol transport. Thus, Shh inactivates PTCH1 by grasping its extracellular domain with two lipidic pincers, the N-terminal palmitate and the C-terminal cholesterol, which are both inserted into the PTCH1 protein core.
Assuntos
Proteínas Hedgehog/metabolismo , Receptor Patched-1/metabolismo , Animais , Colesterol/química , Regulação da Expressão Gênica , Células HEK293 , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Camundongos , Modelos Moleculares , Células NIH 3T3 , Receptor Patched-1/química , Ligação Proteica , Conformação Proteica , Anticorpos de Domínio ÚnicoRESUMO
BACKGROUND: Genome-wide association studies of Alzheimer's disease (AD) have implicated pathways related to lipid homeostasis and innate immunity in AD pathophysiology. However, the exact cellular and chemical mediators of neuroinflammation in AD remain poorly understood. The oxysterol 25-hydroxycholesterol (25-HC) is an important immunomodulator produced by peripheral macrophages with wide-ranging effects on cell signaling and innate immunity. Cholesterol 25-hydroxylase (CH25H), the enzyme responsible for 25-HC production, has also been found to be one of the disease-associated microglial (DAM) genes that are upregulated in the brain of AD and AD transgenic mouse models. METHODS: We used real-time PCR and immunoblotting to examine CH25H expression in human AD brain tissue and in transgenic mouse brain tissue-bearing amyloid-ß plaques or tau pathology. The innate immune response of primary mouse microglia under different treatment conditions or bearing different genetic backgrounds was analyzed using ELISA, western blotting, or immunocytochemistry. RESULTS: We found that CH25H expression is upregulated in human AD brain tissue and in transgenic mouse brain tissue-bearing amyloid-ß plaques or tau pathology. Treatment with the toll-like receptor 4 (TLR4) agonist lipopolysaccharide (LPS) markedly upregulates CH25H expression in the mouse brain and stimulates CH25H expression and 25-HC secretion in mouse primary microglia. We found that LPS-induced microglial production of the pro-inflammatory cytokine IL-1ß is markedly potentiated by 25-HC and attenuated by the deletion of CH25H. Microglia expressing apolipoprotein E4 (apoE4), a genetic risk factor for AD, produce greater amounts of 25-HC than apoE3-expressing microglia following treatment with LPS. Remarkably, 25-HC treatment results in a greater level of IL-1ß secretion in LPS-activated apoE4-expressing microglia than in apoE2- or apoE3-expressing microglia. Blocking potassium efflux or inhibiting caspase-1 prevents 25-HC-potentiated IL-1ß release in apoE4-expressing microglia, indicating the involvement of caspase-1 inflammasome activity. CONCLUSION: 25-HC may function as a microglial-secreted inflammatory mediator in the brain, promoting IL-1ß-mediated neuroinflammation in an apoE isoform-dependent manner (E4>>E2/E3) and thus may be an important mediator of neuroinflammation in AD.
Assuntos
Apolipoproteínas E/metabolismo , Hidroxicolesteróis/metabolismo , Interleucina-1beta/metabolismo , Microglia/metabolismo , Esteroide Hidroxilases/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Apolipoproteínas E/genética , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Transgênicos , Microglia/efeitos dos fármacos , Esteroide Hidroxilases/genética , Proteínas tau/metabolismoRESUMO
Niemann-Pick disease type C1 (NPC1) is a fatal, neurodegenerative, cholesterol storage disorder. With new therapeutics in clinical trials, there is an urgency to improve diagnostics and monitor therapeutic efficacy with biomarkers. In this study, we sought to define the structure of an unknown lipid biomarker for NPC1 with [M + H]+ ion at m/z 509.3351, previously designated as lysoSM-509. The structure of N-palmitoyl-O-phosphocholineserine (PPCS) was proposed for the lipid biomarker based on the results from mass spectrometric analyses and chemical derivatizations. As no commercial standard is available, authentic PPCS was chemically synthesized, and the structure was confirmed by comparison of endogenous and synthetic compounds as well as their derivatives using liquid chromatography-tandem mass spectrometry (LC-MS/MS). PPCS is the most abundant species among N-acyl-O-phosphocholineserines (APCS), a class of lipids that have not been previously detected in biological samples. Further analysis demonstrated that all APCS species with acyl groups ranging from C14 to C24 were elevated in NPC1 plasma. PPCS is also elevated in both central and peripheral tissues of the NPC1 cat model. Identification of APCS structures provide an opportunity for broader exploration of the roles of these novel lipids in NPC1 disease pathology and diagnosis.
Assuntos
Doença de Niemann-Pick Tipo C/metabolismo , Fosforilcolina/metabolismo , Animais , Biomarcadores/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Doença de Niemann-Pick Tipo C/genéticaRESUMO
Identifying sites of protein-ligand interaction is important for structure-based drug discovery and understanding protein structure-function relationships. Mass spectrometry (MS) has emerged as a useful tool for identifying residues covalently modified by ligands. Current methods use database searches that are dependent on acquiring interpretable fragmentation spectra (MS2) of peptide-ligand adducts. This is problematic for identifying sites of hydrophobic ligand incorporation in integral membrane proteins (IMPs), where poor aqueous solubility and ionization of peptide-ligand adducts and collision-induced adduct loss hinder the acquisition of quality MS2 spectra. To address these issues, we developed a fast ligand identification (FLI) tag that can be attached to any alkyne-containing ligand via Cu(I)-catalyzed cycloaddition. The FLI tag adds charge to increase solubility and ionization, and utilizes stable isotope labeling for MS1 level identification of hydrophobic peptide-ligand adducts. The FLI tag was coupled to an alkyne-containing neurosteroid photolabeling reagent and used to identify peptide-steroid adducts in MS1 spectra via the stable heavy isotope pair. Peptide-steroid adducts were not identified in MS2-based database searches because collision-induced adduct loss was the dominant feature of collision-induced dissociation (CID) fragmentation, but targeted analysis of MS1 pairs using electron transfer dissociation (ETD) markedly reduced adduct loss. Using the FLI tag and ETD, we identified Glu73 as the site of photoincorporation of our neurosteroid ligand in the IMP, mouse voltage-dependent anion channel-1 (mVDAC1), and top-down MS confirmed a single site of photolabeling.
Assuntos
Ligantes , Peptídeos/química , Espectrometria de Massas em Tandem , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Alcinos/química , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Química Click , Interações Hidrofóbicas e Hidrofílicas , Marcação por Isótopo , Camundongos , Peptídeos/metabolismo , Solubilidade , Raios Ultravioleta , Canal de Ânion 1 Dependente de Voltagem/químicaRESUMO
Neuroactive steroids are efficacious modulators of γ-aminobutyric acid type A receptor (GABA(A)) receptor function. The effects of steroids on the GABA(A) receptor are typically determined by comparing steady-state single-channel open probability or macroscopic peak responses elicited by GABA in the absence and presence of a steroid. Due to differences in activation conditions (exposure duration, concentration of agonist), it is not obvious whether modulation measured using typical experimental protocols can be used to accurately predict the effect of a modulator on native receptors under physiologic conditions. In the present study, we examined the effects of 14 neuroactive steroids and analogs on the properties of spontaneous inhibitory postsynaptic currents (sIPSCs) in cultured rat hippocampal neurons. The goal was to determine whether the magnitude of modulation of the decay time course of sIPSCs correlates with the extent of modulation and kinetic properties of potentiation as determined in previous single-channel studies. The steroids were selected to cover a wide range of efficacy on heterologously expressed rat α1ß2γ2L GABA(A) receptors, ranging from essentially inert to highly efficacious (strong potentiators of single-channel and macroscopic peak responses). The data indicate a strong correlation between prolongation of the decay time course of sIPSCs and potentiation of single-channel open probability. Furthermore, changes in intracluster closed time distributions were the single best predictor of prolongation of sIPSCs. We infer that the information obtained in steady-state single-channel recordings can be used to forecast modulation of synaptic currents.
Assuntos
Hipocampo/fisiologia , Potenciais Pós-Sinápticos Inibidores/fisiologia , Neurônios/fisiologia , Receptores de GABA-A/biossíntese , Esteroides/química , Esteroides/farmacologia , Animais , Animais Recém-Nascidos , Células Cultivadas , Regulação da Expressão Gênica , Hipocampo/efeitos dos fármacos , Potenciais Pós-Sinápticos Inibidores/efeitos dos fármacos , Neurônios/efeitos dos fármacos , RatosRESUMO
Estrone and 17ß-estradiol are phenolic steroids that are known to be neuroprotective in multiple models of neuronal injury. Previous studies have identified the importance of their phenolic steroid A-ring for neuroprotection and have identified ortho substituents at the C-2 and C-4 positions on the phenol ring that enhance this activity. To investigate the importance of the steroid ring system for neuroprotective activity, phenolic compounds having the cyclopent[b]anthracene, cyclopenta[b]phenanthrene, benz[f]indene, benz[e]indene, indenes linked to a phenol, and a phenolic spiro ring system were prepared. New synthetic methods were developed to make some of the cyclopent[b]anthracene analogues as well as the spiro ring system. Compounds were evaluated for their ability to protect HT-22 hippocampal neurons from glutamate neurotoxicity and their activity relative to a potent neuroprotective analogue of 17ß-estradiol was determined. An adamantyl substituent placed ortho to the phenolic hydroxyl group gave neuroprotective analogues in all ring systems studied.
Assuntos
Estrogênios/química , Estrogênios/farmacologia , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/farmacologia , Linhagem Celular , Hipocampo/citologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Compostos de Espiro/química , Relação Estrutura-AtividadeRESUMO
A unified total synthesis route has been used to prepare 18- and 19-trideuterated testosterone, androstenedione and progesterone. The 18-trideuterated steroid synthetic method starts with the synthesis of 2-(methyl-d3)-1,3-cyclopentanedione from CD3I and 1,3-cyclopentanedione and is subsequently converted into the Hajos-Parrish ketone for synthesis of these trideuterated steroids. The 19-trideuterated steroid synthesis proceeds through non-deuterated Hajos-Parrish ketone with incorporation of the 19-methyl-d3 group from CD3I at a later stage of the same synthetic route. Utilization of CD3I at both the initial and later stages of the synthesis provides a route to 18,19-hexadeuterated steroids. The deuterated steroids are useful for studies of steroid biosynthesis and metabolism.
Assuntos
Androstenodiona , Progesterona , Androstenodiona/metabolismo , Progesterona/metabolismo , Testosterona/metabolismo , Esteroides , CetonasRESUMO
Sterol transport proteins (STPs) play a pivotal role in cholesterol homeostasis and therefore are essential for healthy human physiology. Despite recent advances in dissecting functions of STPs in the human cell, there is still a significant knowledge gap regarding their specific biological functions and a lack of suitable selective probes for their study. Here, we profile fluorescent steroid-based probes across ten STPs, uncovering substantial differences in their selectivity, aiding the retrospective and prospective interpretation of biological results generated with those probes. These results guided the establishment of an STP screening panel combining diverse biophysical assays, enabling the evaluation of 41 steroid-based natural products and derivatives. Combining this with a thorough structural analysis revealed the molecular basis for STP specific selectivity profiles, leading to the uncovering of several new potent and selective Aster-B inhibitors, and supporting the role of this protein in steroidogenesis.
RESUMO
Neuropsychiatric and neurodegenerative disorders are correlated with cellular stress. Macroautophagy (autophagy) may represent an important protective pathway to maintain cellular homeostasis and functionality, as it targets cytoplasmic components to lysosomes for degradation and recycling. Given recent evidence that some novel psychiatric treatments, such as the neuroactive steroid (NAS) allopregnanolone (AlloP, brexanolone), may induce autophagy, we stably transfected human embryonic kidney 293 (HEK) cells with a ratiometric fluorescent probe to assay NAS effects on autophagy. We hypothesized that NAS may modulate autophagy in part by the ability of uncharged NAS to readily permeate membranes. Microscopy revealed a weak effect of AlloP on autophagic flux compared with the positive control treatment of Torin1. In high-throughput microplate experiments, we found that autophagy induction was more robust in early passages of HEK cells. Despite limiting studies to early passages for maximum sensitivity, a range of NAS structures failed to reliably induce autophagy or interact with Torin1 or starvation effects. To probe NAS in a system where AlloP effects have been shown previously, we surveyed astrocytes and again saw minimal autophagy induction by AlloP. Combined with other published results, our results suggest that NAS may modulate autophagy in a cell-specific or context-specific manner. Although there is merit to cell lines as a screening tool, future studies may require assaying NAS in cells from brain regions involved in neuropsychiatric disorders.
Assuntos
Neuroesteroides , Humanos , Autofagia , Macroautofagia , Rim , LisossomosRESUMO
BACKGROUND AND PURPOSE: Neurosteroids are allosteric modulators of GABAA currents, acting through several functional binding sites although their affinity and specificity for each site are unknown. The goal of this study was to measure steady-state binding affinities of various neurosteroids for specific sites on the GABAA receptor. EXPERIMENTAL APPROACH: Two methods were developed to measure neurosteroid binding affinity: (1) quenching of specific tryptophan residues in neurosteroid binding sites by the neurosteroid 17-methylketone group, and (2) FRET between MQ290 (an intrinsically fluorescent neurosteroid) and tryptophan residues in the binding sites. The assays were developed using ELIC-α1GABAAR, a chimeric receptor containing transmembrane domains of the α1-GABAA receptor. Tryptophan mutagenesis was used to identify specific interactions. KEY RESULTS: Allopregnanolone (3α-OH neurosteroid) was shown to bind at intersubunit and intrasubunit sites with equal affinity, whereas epi-allopregnanolone (3ß-OH neurosteroid) binds at the intrasubunit site. MQ290 formed a strong FRET pair with W246, acting as a site-specific probe for the intersubunit site. The affinity and site-specificity of several neurosteroid agonists and inverse agonists was measured using the MQ290 binding assay. The FRET assay distinguishes between competitive and allosteric inhibition of MQ290 binding and demonstrated an allosteric interaction between the two neurosteroid binding sites. CONCLUSIONS AND IMPLICATIONS: The affinity and specificity of neurosteroid binding to two sites in the ELIC-α1GABAAR were directly measured and an allosteric interaction between the sites was revealed. Adaptation of the MQ290 FRET assay to a plate-reader format will enable screening for high affinity agonists and antagonists for neurosteroid binding sites.
Assuntos
Neuroesteroides , Receptores de GABA-A , Receptores de GABA-A/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/genética , Sítios de Ligação , Neuroesteroides/metabolismo , Animais , Pregnanolona/farmacologia , Pregnanolona/metabolismo , Humanos , Transferência Ressonante de Energia de Fluorescência , Xenopus laevis , Ligação ProteicaRESUMO
The trifluoromethylphenyl diazirine (TPD) group is widely used in photoaffinity labeling studies. The TPDYNE group (TPD with an additional alkyne substituent on the phenyl ring) enables the use of click chemistry in conjunction with photoaffinity labeling and expands the utility of the TPD group. New methods for preparing previously known as well as new TPDYNE reagents are reported. Additional methods for preparation of a TPDYNE precursor from which the TPDYNE group can be generated once the precursor is attached to the molecule of interest are also described. Procedures for attaching the TPDYNE or TPDYNE precursor to carboxyl, amino, hydroxyl and alkyne groups are demonstrated using steroids as examples.
RESUMO
BACKGROUND: GM1 gangliosidosis is a rare, fatal, neurodegenerative disease caused by mutations in the GLB1 gene and deficiency in ß-galactosidase. Delay of symptom onset and increase in lifespan in a GM1 gangliosidosis cat model after adeno-associated viral (AAV) gene therapy treatment provide the basis for AAV gene therapy trials. The availability of validated biomarkers would greatly improve assessment of therapeutic efficacy. METHODS: The liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to screen oligosaccharides as potential biomarkers for GM1 gangliosidosis. The structures of pentasaccharide biomarkers were determined with mass spectrometry, as well as chemical and enzymatic degradations. Comparison of LC-MS/MS data of endogenous and synthetic compounds confirmed the identification. The study samples were analyzed with fully validated LC-MS/MS methods. FINDINGS: We identified two pentasaccharide biomarkers, H3N2a and H3N2b, that were elevated more than 18-fold in patient plasma, cerebrospinal fluid (CSF), and urine. Only H3N2b was detectable in the cat model, and it was negatively correlated with ß-galactosidase activity. Following intravenous (IV) AAV9 gene therapy treatment, reduction of H3N2b was observed in central nervous system, urine, plasma, and CSF samples from the cat model and in urine, plasma, and CSF samples from a patient. Reduction of H3N2b accurately reflected normalization of neuropathology in the cat model and improvement of clinical outcomes in the patient. INTERPRETATIONS: These results demonstrate that H3N2b is a useful pharmacodynamic biomarker to evaluate the efficacy of gene therapy for GM1 gangliosidosis. H3N2b will facilitate the translation of gene therapy from animal models to patients. FUNDING: This work was supported by grants U01NS114156, R01HD060576, ZIAHG200409, and P30 DK020579 from the National Institutes of Health (NIH) and a grant from National Tay-Sachs and Allied Diseases Association Inc.
Assuntos
Gangliosidose GM1 , Doenças Neurodegenerativas , Animais , Gangliosidose GM1/genética , Gangliosidose GM1/terapia , Gangliosidose GM1/patologia , Doenças Neurodegenerativas/terapia , Cromatografia Líquida , Espectrometria de Massas em Tandem , beta-Galactosidase/genética , beta-Galactosidase/química , beta-Galactosidase/uso terapêutico , Biomarcadores/líquido cefalorraquidiano , Terapia GenéticaRESUMO
Lysosomes coordinate cellular metabolism and growth upon sensing of essential nutrients, including cholesterol. Through bioinformatic analysis of lysosomal proteomes, we identified lysosomal cholesterol signaling (LYCHOS, previously annotated as G protein-coupled receptor 155), a multidomain transmembrane protein that enables cholesterol-dependent activation of the master growth regulator, the protein kinase mechanistic target of rapamycin complex 1 (mTORC1). Cholesterol bound to the amino-terminal permease-like region of LYCHOS, and mutating this site impaired mTORC1 activation. At high cholesterol concentrations, LYCHOS bound to the GATOR1 complex, a guanosine triphosphatase (GTPase)-activating protein for the Rag GTPases, through a conserved cytoplasm-facing loop. By sequestering GATOR1, LYCHOS promotes cholesterol- and Rag-dependent recruitment of mTORC1 to lysosomes. Thus, LYCHOS functions in a lysosomal pathway for cholesterol sensing and couples cholesterol concentrations to mTORC1-dependent anabolic signaling.
Assuntos
Colesterol , Lisossomos , Alvo Mecanístico do Complexo 1 de Rapamicina , Receptores Acoplados a Proteínas G , Colesterol/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Humanos , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Proteoma/metabolismo , Receptores Acoplados a Proteínas G/metabolismoRESUMO
Aliphatic diazirine analogues of cholesterol have been used previously to elaborate the cholesterol proteome and identify cholesterol binding sites on proteins. Cholesterol analogues containing the trifluoromethylphenyl diazirine (TPD) group have not been reported. Both classes of diazirines have been prepared for neurosteroid photolabeling studies and their combined use provided information that was not obtainable with either diazirine class alone. Hence, we prepared cholesterol TPD analogues and used them along with previously reported aliphatic diazirine analogues as photoaffinity labeling reagents to obtain additional information on the cholesterol binding sites of the pentameric Gloeobacter ligand-gated ion channel (GLIC). We first validated the TPD analogues as cholesterol substitutes and compared their actions with those of previously reported aliphatic diazirines in cell culture assays. All the probes bound to the same cholesterol binding site on GLIC but with differences in photolabeling efficiencies and residues identified. Photolabeling of mammalian (HEK) cell membranes demonstrated differences in the pattern of proteins labeled by the two classes of probes. Collectively, these date indicate that cholesterol photoaffinity labeling reagents containing an aliphatic diazirine or TPD group provide complementary information and will both be useful tools in future studies of cholesterol biology.
Assuntos
Colesterol/análogos & derivados , Diazometano/análogos & derivados , Canais Iônicos de Abertura Ativada por Ligante/química , Marcadores de Fotoafinidade/química , Alcinos/síntese química , Alcinos/química , Alcinos/metabolismo , Sítios de Ligação , Colesterol/síntese química , Colesterol/metabolismo , Cianobactérias/química , Diazometano/síntese química , Diazometano/metabolismo , Corantes Fluorescentes/química , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Marcadores de Fotoafinidade/síntese química , Marcadores de Fotoafinidade/metabolismo , Ligação ProteicaRESUMO
Hedgehog (HH) morphogen signalling, crucial for cell growth and tissue patterning in animals, is initiated by the binding of dually lipidated HH ligands to cell surface receptors. Hedgehog-Interacting Protein (HHIP), the only reported secreted inhibitor of Sonic Hedgehog (SHH) signalling, binds directly to SHH with high nanomolar affinity, sequestering SHH. Here, we report the structure of the HHIP N-terminal domain (HHIP-N) in complex with a glycosaminoglycan (GAG). HHIP-N displays a unique bipartite fold with a GAG-binding domain alongside a Cysteine Rich Domain (CRD). We show that HHIP-N is required to convey full HHIP inhibitory function, likely by interacting with the cholesterol moiety covalently linked to HH ligands, thereby preventing this SHH-attached cholesterol from binding to the HH receptor Patched (PTCH1). We also present the structure of the HHIP C-terminal domain in complex with the GAG heparin. Heparin can bind to both HHIP-N and HHIP-C, thereby inducing clustering at the cell surface and generating a high-avidity platform for SHH sequestration and inhibition. Our data suggest a multimodal mechanism, in which HHIP can bind two specific sites on the SHH morphogen, alongside multiple GAG interactions, to inhibit SHH signalling.
Assuntos
Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas Hedgehog/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/metabolismo , Transdução de Sinais , Proteínas de Transporte/genética , Colesterol/química , Colesterol/metabolismo , Glicosaminoglicanos/química , Glicosaminoglicanos/metabolismo , Proteínas Hedgehog/química , Proteínas Hedgehog/genética , Humanos , Ligantes , Glicoproteínas de Membrana/genética , Ligação Proteica , Domínios ProteicosRESUMO
Neuroactive steroids are an ascendant class of treatment for neuropsychiatric illness. Effects on ligand-gated neurotransmitter receptors appear to be a major mechanism of action. Here we describe a neuroactive steroid with a unique constellation of receptor actions. MQ-221 is a sulfated, 3ß-hydroxy neurosteroid analogue that inhibits NMDAR function but also potentiates GABAAR function, thereby exhibiting unusual but potentially clinically desirable effects. Although the compound also exhibited features of other sulfated steroids, namely activation-dependent inhibition of GABAAR function, net potentiation dominated under physiological conditions. Potentiation of GABAAR function was distinct from the mechanism governing potentiation by anesthetic neurosteroids. Inhibition of NMDAR function showed weaker channel activation dependence than pregnanolone sulfate (3α5ßPS). MQ-221 was unique among four stereoisomers explored in the pattern of effects at GABAA and NMDARs. Taken together, MQ-221 may represent a new class of compound with unique psychoactive effects and beneficial prospects for treating neuropsychiatric disorders.
Assuntos
Neuroesteroides/farmacologia , Receptores de GABA-A/fisiologia , Receptores de N-Metil-D-Aspartato/antagonistas & inibidores , Animais , Hipocampo/fisiologia , Pregnanolona/farmacologia , Ratos Sprague-DawleyRESUMO
We report an efficient synthesis of cyclopenta[b]phenanthrenes functionalized at C-3 and C-8 from an optically pure Hajos-Parrish ketone. The key step is a neutral alumina catalyzed Michael addition of a Hajos-Parrish ketone derivative (4) to 1,7-octadien-3-one (2) in 98% yield. This Michael addition product went through Krapcho decarbomethoxylation, aldol condensation, lithium liquid ammonia reduction, Wacker oxidation and acid catalyzed cyclization to form cyclopenta[b]phenanthrene (1a) in 37% overall yield for the 7 steps.
RESUMO
Positive modulators of NMDA receptors are important candidates for therapeutic development to treat psychiatric disorders including autism and schizophrenia. Sulfated neurosteroids have been studied as positive allosteric modulators of NMDA receptors for years, but we understand little about the cellular fate of these compounds, an important consideration for drug development. Here we focus on a visualizable sulfated neurosteroid analogue, KK-169. As expected of a pregnenolone sulfate analogue, the compound strongly potentiates NMDA receptor function, is an antagonist of GABAA receptors, exhibits occlusion with pregnenolone sulfate potentiation, and requires receptor domains important for pregnenolone sulfate potentiation. KK-169 exhibits somewhat higher potency than the natural parent, pregnenolone sulfate. The analogue contains a side-chain alkyne group, which we exploited for retrospective click labeling of neurons. Although the anionic sulfate group is expected to hinder cell entry, we detected significant accumulation of KK-169 in neurons with even brief incubations. Adding a photolabile diazirine group revealed that the expected plasma membrane localization of KK-169 is likely lost during fixation. Overall, our studies reveal new facets of the structure-activity relationship of neurosteroids at NMDA receptors, and their intracellular distribution suggests that sulfated neurosteroids could have unappreciated targets in addition to plasma membrane receptors.