Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.417
Filtrar
1.
EMBO J ; 42(20): e112630, 2023 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-37712330

RESUMO

Two major mechanisms safeguard genome stability during mitosis: the mitotic checkpoint delays mitosis until all chromosomes have attached to microtubules, and the kinetochore-microtubule error-correction pathway keeps this attachment process free from errors. We demonstrate here that the optimal strength and dynamics of these processes are set by a kinase-phosphatase pair (PLK1-PP2A) that engage in negative feedback from adjacent phospho-binding motifs on the BUB complex. Uncoupling this feedback to skew the balance towards PLK1 produces a strong checkpoint, hypostable microtubule attachments and mitotic delays. Conversely, skewing the balance towards PP2A causes a weak checkpoint, hyperstable microtubule attachments and chromosome segregation errors. These phenotypes are associated with altered BUB complex recruitment to KNL1-MELT motifs, implicating PLK1-PP2A in controlling auto-amplification of MELT phosphorylation. In support, KNL1-BUB disassembly becomes contingent on PLK1 inhibition when KNL1 is engineered to contain excess MELT motifs. This elevates BUB-PLK1/PP2A complex levels on metaphase kinetochores, stabilises kinetochore-microtubule attachments, induces chromosome segregation defects and prevents KNL1-BUB disassembly at anaphase. Together, these data demonstrate how a bifunctional PLK1/PP2A module has evolved together with the MELT motifs to optimise BUB complex dynamics and ensure accurate chromosome segregation.


Assuntos
Cinetocoros , Pontos de Checagem da Fase M do Ciclo Celular , Humanos , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos , Fosforilação , Microtúbulos/metabolismo , Mitose , Células HeLa
2.
Proc Natl Acad Sci U S A ; 120(14): e2217672120, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36989303

RESUMO

Polyploidy is a major evolutionary force that has shaped plant diversity. However, the various pathways toward polyploid formation and interploidy gene flow remain poorly understood. Here, we demonstrated that the immediate progeny of allotriploid AAC Brassica (obtained by crossing allotetraploid Brassica napus and diploid Brassica rapa) was predominantly aneuploids with ploidal levels ranging from near-triploidy to near-hexaploidy, and their chromosome numbers deviated from the theoretical distribution toward increasing chromosome numbers, suggesting that they underwent selection. Karyotype and phenotype analyses showed that aneuploid individuals containing fewer imbalanced chromosomes had higher viability and fertility. Within three generations of self-fertilization, allotriploids mainly developed into near or complete allotetraploids similar to B. napus via gradually increasing chromosome numbers and fertility, suggesting that allotriploids could act as a bridge in polyploid formation, with aneuploids as intermediates. Self-fertilized interploidy hybrids ultimately generated new allopolyploids carrying different chromosome combinations, which may create a reproductive barrier preventing allotetraploidy back to diploidy and promote gene flow from diploids to allotetraploids. These results suggest that the maintenance of a proper genome balance and dosage drove the recurrent conversion of allotriploids to allotetraploids, which may contribute to the formation and evolution of polyploids.


Assuntos
Brassica napus , Brassica , Brassica/genética , Genoma de Planta/genética , Poliploidia , Brassica napus/genética , Aneuploidia
3.
Plant J ; 118(6): 1793-1814, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38461478

RESUMO

Flavan-3-ols are prominent phenolic compounds found abundantly in the young leaves of tea plants. The enzymes involved in flavan-3-ol biosynthesis in tea plants have been extensively investigated. However, the localization and associations of these numerous functional enzymes within cells have been largely neglected. In this study, we aimed to investigate the synthesis of flavan-3-ols in tea plants, particularly focusing on epigallocatechin gallate. Our analysis involving the DESI-MSI method to reveal a distinct distribution pattern of B-ring trihydroxylated flavonoids, primarily concentrated in the outer layer of buds. Subcellular localization showed that CsC4H, CsF3'H, and CsF3'5'H localizes endoplasmic reticulum. Protein-protein interaction studies demonstrated direct associations between CsC4H, CsF3'H, and cytoplasmic enzymes (CHS, CHI, F3H, DFR, FLS, and ANR), highlighting their interactions within the biosynthetic pathway. Notably, CsF3'5'H, the enzyme for B-ring trihydroxylation, did not directly interact with other enzymes. We identified cytochrome b5 isoform C serving as an essential redox partner, ensuring the proper functioning of CsF3'5'H. Our findings suggest the existence of distinct modules governing the synthesis of different B-ring hydroxylation compounds. This study provides valuable insights into the mechanisms underlying flavonoid diversity and efficient synthesis and enhances our understanding of the substantial accumulation of B-ring trihydroxylated flavan-3-ols in tea plants.


Assuntos
Camellia sinensis , Catequina , Citocromos b5 , Flavonoides , Proteínas de Plantas , Flavonoides/metabolismo , Flavonoides/biossíntese , Camellia sinensis/metabolismo , Camellia sinensis/genética , Catequina/metabolismo , Catequina/análogos & derivados , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Citocromos b5/metabolismo , Citocromos b5/genética , Folhas de Planta/metabolismo , Hidroxilação , Retículo Endoplasmático/metabolismo
4.
Plant Cell ; 34(4): 1308-1325, 2022 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-34999895

RESUMO

Endoreduplication, a process in which DNA replication occurs in the absence of mitosis, is found in all eukaryotic kingdoms, especially plants, where it is assumed to be important for cell growth and cell fate maintenance. However, a comprehensive understanding of the mechanism regulating endoreduplication is still lacking. We previously reported that UBIQUITIN-SPECIFIC PROTEASE14 (UBP14), encoded by DA3, acts upstream of CYCLIN-DEPENDENT KINASE B1;1 (CDKB1;1) to influence endoreduplication and cell growth in Arabidopsis thaliana. The da3-1 mutant possesses large cotyledons with enlarged cells due to high ploidy levels. Here, we identified a suppressor of da3-1 (SUPPRESSOR OF da3-1 6; SUD6), encoding CYCLIN-DEPENDENT KINASE G2 (CDKG2), which promotes endoreduplication and cell growth. CDKG2/SUD6 physically associates with CDKB1;1 in vivo and in vitro. CDKB1;1 directly phosphorylates SUD6 and modulates its stability. Genetic analysis indicated that SUD6 acts downstream of DA3 and CDKB1;1 to control ploidy level and cell growth. Thus, our study establishes a regulatory cascade for UBP14/DA3-CDKB1;1-CDKG2/SUD6-mediated control of endoreduplication and cell growth in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Quinases Ciclina-Dependentes/genética , Endorreduplicação/genética , Ubiquitina/genética
5.
Nature ; 572(7767): 56-61, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31316207

RESUMO

The radiation-based sterile insect technique (SIT) has successfully suppressed field populations of several insect pest species, but its effect on mosquito vector control has been limited. The related incompatible insect technique (IIT)-which uses sterilization caused by the maternally inherited endosymbiotic bacteria Wolbachia-is a promising alternative, but can be undermined by accidental release of females infected with the same Wolbachia strain as the released males. Here we show that combining incompatible and sterile insect techniques (IIT-SIT) enables near elimination of field populations of the world's most invasive mosquito species, Aedes albopictus. Millions of factory-reared adult males with an artificial triple-Wolbachia infection were released, with prior pupal irradiation of the released mosquitoes to prevent unintentionally released triply infected females from successfully reproducing in the field. This successful field trial demonstrates the feasibility of area-wide application of combined IIT-SIT for mosquito vector control.


Assuntos
Aedes/microbiologia , Aedes/fisiologia , Controle de Mosquitos/métodos , Mosquitos Vetores/microbiologia , Mosquitos Vetores/fisiologia , Wolbachia/patogenicidade , Aedes/crescimento & desenvolvimento , Animais , China , Copulação , Estudos de Viabilidade , Feminino , Humanos , Mordeduras e Picadas de Insetos/prevenção & controle , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/fisiologia , Masculino , Mosquitos Vetores/crescimento & desenvolvimento , Controle de Qualidade , Reprodução
6.
Cereb Cortex ; 34(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38100332

RESUMO

Functional magnetic resonance imaging faces inherent challenges when applied to deep-brain areas in rodents, e.g. entorhinal cortex, due to the signal loss near the ear cavities induced by susceptibility artifacts and reduced sensitivity induced by the long distance from the surface array coil. Given the pivotal roles of deep brain regions in various diseases, optimized imaging techniques are needed. To mitigate susceptibility-induced signal losses, we introduced baby cream into the middle ear. To enhance the detection sensitivity of deep brain regions, we implemented inductively coupled ear-bars, resulting in approximately a 2-fold increase in sensitivity in entorhinal cortex. Notably, the inductively coupled ear-bar can be seamlessly integrated as an add-on device, without necessitating modifications to the scanner interface. To underscore the versatility of inductively coupled ear-bars, we conducted echo-planner imaging-based task functional magnetic resonance imaging in rats modeling Alzheimer's disease. As a proof of concept, we also demonstrated resting-state-functional magnetic resonance imaging connectivity maps originating from the left entorhinal cortex-a central hub for memory and navigation networks-to amygdala hippocampal area, Insular Cortex, Prelimbic Systems, Cingulate Cortex, Secondary Visual Cortex, and Motor Cortex. This work demonstrates an optimized procedure for acquiring large-scale networks emanating from a previously challenging seed region by conventional magnetic resonance imaging detectors, thereby facilitating improved observation of functional magnetic resonance imaging outcomes.


Assuntos
Doença de Alzheimer , Imageamento por Ressonância Magnética , Ratos , Animais , Imageamento por Ressonância Magnética/métodos , Mapeamento Encefálico/métodos , Encéfalo , Giro do Cíngulo
7.
Proteomics ; : e2400025, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895962

RESUMO

Extracellular vesicles (EVs) carry diverse biomolecules derived from their parental cells, making their components excellent biomarker candidates. However, purifying EVs is a major hurdle in biomarker discovery since current methods require large amounts of samples, are time-consuming and typically have poor reproducibility. Here we describe a simple, fast, and sensitive EV fractionation method using size exclusion chromatography (SEC) on a fast protein liquid chromatography (FPLC) system. Our method uses a Superose 6 Increase 5/150, which has a bed volume of 2.9 mL. The FPLC system and small column size enable reproducible separation of only 50 µL of human plasma in 15 min. To demonstrate the utility of our method, we used longitudinal samples from a group of individuals who underwent intense exercise. A total of 838 proteins were identified, of which, 261 were previously characterized as EV proteins, including classical markers, such as cluster of differentiation (CD)9 and CD81. Quantitative analysis showed low technical variability with correlation coefficients greater than 0.9 between replicates. The analysis captured differences in relevant EV proteins involved in response to physical activity. Our method enables fast and sensitive fractionation of plasma EVs with low variability, which will facilitate biomarker studies in large clinical cohorts.

8.
Biochem Biophys Res Commun ; 711: 149911, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38603832

RESUMO

Macrophages play a crucial role in host response and wound healing, with M2 polarization contributing to the reduction of foreign-body reactions induced by the implantation of biomaterials and promoting tissue regeneration. Electrical stimulation (ES) and micropatterned substrates have a significant impact on the macrophage polarization. However, there is currently a lack of well-established cell culture platforms for studying the synergistic effects of these two factors. In this study, we prepared a graphene free-standing substrate with 20 µm microgrooves using capillary forces induced by water evaporation. Subsequently, we established an ES cell culture platform for macrophage cultivation by integrating a self-designed multi-well chamber cell culture device. We observed that graphene microgrooves, in combination with ES, significantly reduce cell spreading area and circularity. Results from immunofluorescence, ELISA, and flow cytometry demonstrate that the synergistic effect of graphene microgrooves and ES effectively promotes macrophage M2 phenotypic polarization. Finally, RNA sequencing results reveal that the synergistic effects of ES and graphene microgrooves inhibit the macrophage actin polymerization and the downstream PI3K signaling pathway, thereby influencing the phenotypic transition. Our results demonstrate the potential of graphene-based microgrooves and ES to synergistically modulate macrophage polarization, offering promising applications in regenerative medicine.


Assuntos
Estimulação Elétrica , Grafite , Macrófagos , Grafite/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Camundongos , Células RAW 264.7 , Polaridade Celular/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
9.
Clin Chem ; 70(6): 855-864, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38549041

RESUMO

BACKGROUND: The enhanced precision and selectivity of liquid chromatography-tandem mass spectrometry (LC-MS/MS) makes it an attractive alternative to certain clinical immunoassays. Easily transferrable work flows could help facilitate harmonization and ensure high-quality patient care. We aimed to evaluate the interlaboratory comparability of antibody-free multiplexed insulin and C-peptide LC-MS/MS measurements. METHODS: The laboratories that comprise the Targeted Mass Spectrometry Assays for Diabetes and Obesity Research (TaMADOR) consortium verified the performance of a validated peptide-based assay (reproducibility, linearity, and lower limit of the measuring interval [LLMI]). An interlaboratory comparison study was then performed using shared calibrators, de-identified leftover laboratory samples, and reference materials. RESULTS: During verification, the measurements were precise (2.7% to 3.7%CV), linear (4 to 15 ng/mL for C-peptide and 2 to 14 ng/mL for insulin), and sensitive (LLMI of 0.04 to 0.10 ng/mL for C-peptide and 0.03 ng/mL for insulin). Median imprecision across the 3 laboratories was 13.4% (inter-quartile range [IQR] 11.6%) for C-peptide and 22.2% (IQR 20.9%) for insulin using individual measurements, and 10.8% (IQR 8.7%) and 15.3% (IQR 14.9%) for C-peptide and insulin, respectively, when replicate measurements were averaged. Method comparison with the University of Missouri reference method for C-peptide demonstrated a robust linear correlation with a slope of 1.044 and r2 = 0.99. CONCLUSIONS: Our results suggest that combined LC-MS/MS measurements of C-peptide and insulin are robust and adaptable and that standardization with a reference measurement procedure could allow accurate and precise measurements across sites, which could be important to diabetes research and help patient care in the future.


Assuntos
Peptídeo C , Insulina , Espectrometria de Massas em Tandem , Peptídeo C/sangue , Peptídeo C/análise , Humanos , Espectrometria de Massas em Tandem/métodos , Insulina/análise , Insulina/sangue , Cromatografia Líquida/métodos , Reprodutibilidade dos Testes , Laboratórios/normas , Espectrometria de Massa com Cromatografia Líquida
10.
Cell Tissue Res ; 395(2): 189-197, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38180567

RESUMO

Spinal cord injury (SCI) is a significant contributor to disability in contemporary society, resulting in substantial psychological and economic burdens for patients and their family. Microglia-mediated inflammation is an important factor affecting the nerve repair of SCI patients. N6-methyladenosine (m6A) is a prevalent epigenetic modification in mammals, which shows a strong association with inflammation. However, the mechanism of m6A modification regulating microglia-mediated inflammation is still unclear. Here, we observed that METTL3, a m6A methylase, was increased in SCI mice and lipopolysaccharide (LPS)-exposed BV2 cells. Knockdown of METTL3 inhibited the increased expression of iNOS and IL-1ß induced by LPS in vitro. Subsequently, MEF2C, myocyte-specific enhancer factor 2C, was decreased in SCI mice and LPS-exposed BV2 cells. Knockdown of MEF2C promoted the expression of iNOS and IL-1ß. Sequence analysis showed that there were multiple highly confident m6A modification sites on the MEF2C mRNA. METTL3 antibody could pull down a higher level of MEF2C mRNA than the IgG in RNA binding protein immunoprecipitation assay. Knockdown of METTL3 promoted MEF2C protein expression and MEF2C mRNA expression, accompanied by a reduced m6A modification level on the MEF2C mRNA. Knockdown of MEF2C inhibited the anti-inflammatory effect of METTL3 siRNA. Our results suggest that METTL3 promotes microglia inflammation via regulating MEF2C mRNA m6A modification induced by SCI and LPS treatment.


Assuntos
Microglia , Traumatismos da Medula Espinal , Animais , Humanos , Camundongos , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Mamíferos/metabolismo , Fatores de Transcrição MEF2/genética , Fatores de Transcrição MEF2/metabolismo , Metiltransferases/genética , Metiltransferases/metabolismo , Microglia/metabolismo , RNA Mensageiro/metabolismo , Medula Espinal
11.
Mass Spectrom Rev ; 42(2): 796-821, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-34719806

RESUMO

Cancers are caused by accumulated DNA mutations. This recognition of the central role of mutations in cancer and recent advances in next-generation sequencing, has initiated the massive screening of clinical samples and the identification of 1000s of cancer-associated gene mutations. However, proteomic analysis of the expressed mutation products lags far behind genomic (transcriptomic) analysis. With comprehensive global proteomics analysis, only a small percentage of single nucleotide variants detected by DNA and RNA sequencing have been observed as single amino acid variants due to current technical limitations. Proteomic analysis of mutations is important with the potential to advance cancer biomarker development and the discovery of new therapeutic targets for more effective disease treatment. Targeted proteomics using selected reaction monitoring (also known as multiple reaction monitoring) and parallel reaction monitoring, has emerged as a powerful tool with significant advantages over global proteomics for analysis of protein mutations in terms of detection sensitivity, quantitation accuracy and overall practicality (e.g., reliable identification and the scale of quantification). Herein we review recent advances in the targeted proteomics technology for enhancing detection sensitivity and multiplexing capability and highlight its broad biomedical applications for analysis of protein mutations in human bodily fluids, tissues, and cell lines. Furthermore, we review recent applications of top-down proteomics for analysis of protein mutations. Unlike the commonly used bottom-up proteomics which requires digestion of proteins into peptides, top-down proteomics directly analyzes intact proteins for more precise characterization of mutation isoforms. Finally, general perspectives on the potential of achieving both high sensitivity and high sample throughput for large-scale targeted detection and quantification of important protein mutations are discussed.


Assuntos
Proteínas , Proteômica , Humanos , Espectrometria de Massas , Peptídeos/química , Mutação
12.
New Phytol ; 243(1): 477-494, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38715078

RESUMO

Cultivated spinach (Spinacia oleracea) is a dioecious species. We report high-quality genome sequences for its two closest wild relatives, Spinacia turkestanica and Spinacia tetrandra, which are also dioecious, and are used to study the genetics of spinach domestication. Using a combination of genomic approaches, we assembled genomes of both these species and analyzed them in comparison with the previously assembled S. oleracea genome. These species diverged c. 6.3 million years ago (Ma), while cultivated spinach split from S. turkestanica 0.8 Ma. In all three species, all six chromosomes include very large gene-poor, repeat-rich regions, which, in S. oleracea, are pericentromeric regions with very low recombination rates in both male and female genetic maps. We describe population genomic evidence that the similar regions in the wild species also recombine rarely. We characterized 282 structural variants (SVs) that have been selected during domestication. These regions include genes associated with leaf margin type and flowering time. We also describe evidence that the downy mildew resistance loci of cultivated spinach are derived from introgression from both wild spinach species. Collectively, this study reveals the genome architecture of spinach assemblies and highlights the importance of SVs during the domestication of cultivated spinach.


Assuntos
Domesticação , Genoma de Planta , Spinacia oleracea , Spinacia oleracea/genética , Cromossomos de Plantas/genética , Filogenia , Recombinação Genética/genética
13.
Artigo em Inglês | MEDLINE | ID: mdl-38323656

RESUMO

OBJECTIVES: To investigate the prognostic impact and pathophysiological characteristics of fragmented QRS complex (fQRS) on patients with connective tissue disease-associated pulmonary arterial hypertension (CTD-PAH). METHODS: This was a multicentre retrospective study recruiting 141 patients with CTD-PAH diagnosed by right heart catheterization (114 cases in the discovery cohort and 27 cases in the validation cohort). fQRS and ST-T change were detected on conventional 12-lead electrocardiogram (ECG). Patients were followed up every 3 months to update their status and the primary end point was all-cause death. Clinical information and ECG characteristics were compared between survival and death groups and Kaplan-Meier curve was used for survival analysis. RESULTS: There were significant differences in age, gender, 6-min walk distance, NT-proBNP, WHO class, presence of fQRS and presence of ST-T change in inferior leads between survival group and death group. Inferior fQRS and ST-T change were significantly associated with right ventricular (RV) dilatation and reduced RV ejection fraction (RVEF). Kaplan-Meier curve showed that all-cause mortality was higher in CTD-PAH with fQRS (p= 0.003) and inferior ST-T change (p= 0.012). Low- and intermediate-risk CTD-PAH with inferior ST-T change had higher all-cause mortality (p= 0.005). The prognostic value of fQRS and inferior ST-T change was validated in external validation cohort. CONCLUSION: The presence of inferior fQRS and ST-T change could predict poor prognosis in CTD-PAH. CLINICAL TRIAL REGISTRATION NUMBER: NCT05980728, https://clinicaltrials.gov.

14.
Plant Physiol ; 193(2): 1263-1280, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37403642

RESUMO

Sex chromosomes have evolved independently in many different plant lineages. Here, we describe reference genomes for spinach (Spinacia oleracea) X and Y haplotypes by sequencing homozygous XX females and YY males. The long arm of 185-Mb chromosome 4 carries a 13-Mb X-linked region (XLR) and 24.1-Mb Y-linked region (YLR), of which 10 Mb is Y specific. We describe evidence that this reflects insertions of autosomal sequences creating a "Y duplication region" or "YDR" whose presence probably directly reduces genetic recombination in the immediately flanking regions, although both the X and Y sex-linked regions are within a large pericentromeric region of chromosome 4 that recombines rarely in meiosis of both sexes. Sequence divergence estimates using synonymous sites indicate that YDR genes started diverging from their likely autosomal progenitors about 3 MYA, around the time when the flanking YLR stopped recombining with the XLR. These flanking regions have a higher density of repetitive sequences in the YY than the XX assembly and include slightly more pseudogenes compared with the XLR, and the YLR has lost about 11% of the ancestral genes, suggesting some degeneration. Insertion of a male-determining factor would have caused Y linkage across the entire pericentromeric region, creating physically small, highly recombining, terminal pseudoautosomal regions. These findings provide a broader understanding of the origin of sex chromosomes in spinach.


Assuntos
Sequências Repetitivas de Ácido Nucleico , Spinacia oleracea , Spinacia oleracea/genética , Sequências Repetitivas de Ácido Nucleico/genética , Cromossomos Sexuais/genética , Evolução Molecular
15.
BMC Cancer ; 24(1): 317, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38454344

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is the most aggressive form of brain cancer, and chemoresistance poses a significant challenge to the survival and prognosis of GBM. Although numerous regulatory mechanisms that contribute to chemoresistance have been identified, many questions remain unanswered. This study aims to identify the mechanism of temozolomide (TMZ) resistance in GBM. METHODS: Bioinformatics and antibody-based protein detection were used to examine the expression of E2F7 in gliomas and its correlation with prognosis. Additionally, IC50, cell viability, colony formation, apoptosis, doxorubicin (Dox) uptake, and intracranial transplantation were used to confirm the role of E2F7 in TMZ resistance, using our established TMZ-resistance (TMZ-R) model. Western blot and ChIP experiments provided confirmation of p53-driven regulation of E2F7. RESULTS: Elevated levels of E2F7 were detected in GBM tissue and were correlated with a poor prognosis for patients. E2F7 was found to be upregulated in TMZ-R tumors, and its high levels were linked to increased chemotherapy resistance by limiting drug uptake and decreasing DNA damage. The expression of E2F7 was also found to be regulated by the activation of p53. CONCLUSIONS: The high expression of E2F7, regulated by activated p53, confers chemoresistance to GBM cells by inhibiting drug uptake and DNA damage. These findings highlight the significant connection between sustained p53 activation and GBM chemoresistance, offering the potential for new strategies to overcome this resistance.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Antineoplásicos Alquilantes/farmacologia , Antineoplásicos Alquilantes/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Fator de Transcrição E2F7/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Prognóstico , Temozolomida/farmacologia , Temozolomida/uso terapêutico , Proteína Supressora de Tumor p53/genética
16.
FASEB J ; 37(10): e23185, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37695721

RESUMO

Sensory neurons in the dorsal root ganglia (DRG) convey somatosensory and metabolic cues to the central nervous system and release substances from stimulated terminal endings in peripheral organs. Sex-biased variations driven by the sex chromosome complement (XX and XY) have been implicated in the sensory-islet crosstalk. However, the molecular underpinnings of these male-female differences are not known. Here, we aim to characterize the molecular repertoire and the secretome profile of the lower thoracic spinal sensory neurons and to identify molecules with sex-biased insulin sensing- and/or insulin secretion-modulating activity that are encoded independently of circulating gonadal sex hormones. We used transcriptomics and proteomics to uncover differentially expressed genes and secreted molecules in lower thoracic T5-12 DRG sensory neurons derived from sexually immature 3-week-old male and female C57BL/6J mice. Comparative transcriptome and proteome analyses revealed differential gene expression and protein secretion in DRG neurons in males and females. The transcriptome analysis identified, among others, higher insulin signaling/sensing capabilities in female DRG neurons; secretome screening uncovered several sex-specific candidate molecules with potential regulatory functions in pancreatic ß cells. Together, these data suggest a putative role of sensory interoception of insulin in the DRG-islet crosstalk with implications in sensory feedback loops in the regulation of ß-cell activity in a sex-biased manner. Finally, we provide a valuable resource of molecular and secretory targets that can be leveraged for understanding insulin interoception and insulin secretion and inform the development of novel studies/approaches to fathom the role of the sensory-islet axis in the regulation of energy balance in males and females.


Assuntos
Insulina , Transcriptoma , Feminino , Masculino , Camundongos , Animais , Camundongos Endogâmicos C57BL , Secreção de Insulina , Caracteres Sexuais , Secretoma , Células Receptoras Sensoriais
17.
Langmuir ; 40(1): 915-926, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38154048

RESUMO

High-efficiency dye desalination is crucial in the textile industry, considering its importance for human health, safe aquatic ecological systems, and resource recovery. In order to solve the problem of effective separation of univalent salt and ionic dye under the condition of high salt, ionic hyperbranched poly(amido-amine) (HBPs) were synthesized based on a simple and scalable one-step polycondensation method and then incorporated into the polyamide (PA) selective layers to construct charged nanochannels through interfacial polymerization (IP) on the surface of a polyvinyl chloride ultrafiltration (PVC-UF) hollow fiber membrane. Both the internal nanopores of HBPs (internal nanochannels) and the interfacial voids between HBPs and the PA matrix (external nanochannels) can be regarded as a fast water molecule transport pathway, while the terminal ionic groups of ionic HBPs endow the nanochannels with charge characteristics for improving ionic dye/salt selectivities. The permeate fluxes and dye/salt selectivities of HBP-TAC/PIP (57.3 L m-2 h-1 and rhodamine B (RB)/NaCl selectivity of 224.0) and HBP-PS/PIP (63.7 L m-2 h-1 and lemon yellow (LY)/NaCl selectivity of 664.0) membranes under 0.4 MPa operation pressure are much higher than PIP-only and HBP-NH2/PIP membranes. At the same time, this project also studied the membrane desalination process in a simulated high-salinity dye/salt mixture system to provide a theoretical basis and technical support for the actual dye desalination process.

18.
Exp Cell Res ; 424(2): 113505, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36736607

RESUMO

Pulmonary arterial hypertension (PAH) is a chronic disease characterized by pulmonary vascular remodeling. It refers to the abnormal proliferation of pulmonary artery smooth muscle cells (PASMCs), and hypoxia is an important risk factor for this progression. The present study aims to investigate the role of YTHDF1 in the regulation of hypoxic PASMC proliferation and the underlying mechanism. Human PASMCs were transfected with si-YTHDF1/2/3 followed by treatment of hypoxia, and the PASMC proliferation and Foxm1 expression were detected. Through RNA pull-down, RNA immunoprecipitation, and protein synthesis assay, the mechanism of YTHDF1 regulating Foxm1 was explored. Next, Foxm1 was inhibited by thiostrepton, and cell proliferation was detected. In vivo, mice received a tail vein injection of adenovirus containing si-YTHDF1 and were exposed to hypoxia treatment. Pulmonary vascular changes, right ventricular systolic pressure (RVSP), and genes involving proliferation were analyzed. YTHDF1 silencing reduced more hypoxic PASMC proliferation and Foxm1 protein level than YTHDF2/3 silencing. Mechanical results showed that YTHDF1 interacted with Foxm1 mRNA and up-regulated Foxm1 protein level by enhancing the translation efficiency in an m6A-dependent manner. Furthermore, YTHDF1 facilitated hypoxic PASMC proliferation and proliferation marker expressions through up-regulation of Foxm1 in an m6A-dependent manner. In vivo, the YTHDF1 silencing alleviated pulmonary vascular changes and fibrosis, reduced RVSP, inhibited the interaction of YTHDF1 and Foxm1, and reduced proliferation marker levels, as compared to the PAH group. In conclusion, YTHDF1 silencing inhibits hypoxic PASMC proliferation by regulating Foxm1 translation in an m6A-dependent manner.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Animais , Humanos , Camundongos , Proliferação de Células , Células Cultivadas , Proteína Forkhead Box M1/genética , Proteína Forkhead Box M1/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Hipertensão Pulmonar/metabolismo , Hipóxia/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Artéria Pulmonar/metabolismo , RNA/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
19.
Mol Cell Proteomics ; 21(12): 100426, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36244662

RESUMO

Despite their diminutive size, islets of Langerhans play a large role in maintaining systemic energy balance in the body. New technologies have enabled us to go from studying the whole pancreas to isolated whole islets, to partial islet sections, and now to islet substructures isolated from within the islet. Using a microfluidic nanodroplet-based proteomics platform coupled with laser capture microdissection and field asymmetric waveform ion mobility spectrometry, we present an in-depth investigation of protein profiles specific to features within the islet. These features include the islet-acinar interface vascular tissue, inner islet vasculature, isolated endocrine cells, whole islet with vasculature, and acinar tissue from around the islet. Compared to interface vasculature, unique protein signatures observed in the inner vasculature indicate increased innervation and intra-islet neuron-like crosstalk. We also demonstrate the utility of these data for identifying localized structure-specific drug-target interactions using existing protein/drug binding databases.


Assuntos
Ilhotas Pancreáticas , Ilhotas Pancreáticas/metabolismo , Proteômica/métodos , Proteínas/metabolismo , Microdissecção e Captura a Laser
20.
BMC Urol ; 24(1): 27, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308308

RESUMO

OBJECTIVES: To establish a predictive model for sepsis after percutaneous nephrolithotomy (PCNL) using machine learning to identify high-risk patients and enable early diagnosis and intervention by urologists. METHODS: A retrospective study including 694 patients who underwent PCNL was performed. A predictive model for sepsis using machine learning was constructed based on 22 preoperative and intraoperative parameters. RESULTS: Sepsis occurred in 45 of 694 patients, including 16 males (35.6%) and 29 females (64.4%). Data were randomly segregated into an 80% training set and a 20% validation set via 100-fold Monte Carlo cross-validation. The variables included in this study were highly independent. The model achieved good predictive power for postoperative sepsis (AUC = 0.89, 87.8% sensitivity, 86.9% specificity, and 87.4% accuracy). The top 10 variables that contributed to the model prediction were preoperative midstream urine bacterial culture, sex, days of preoperative antibiotic use, urinary nitrite, preoperative blood white blood cell (WBC), renal pyogenesis, staghorn stones, history of ipsilateral urologic surgery, cumulative stone diameters, and renal anatomic malformation. CONCLUSION: Our predictive model is suitable for sepsis estimation after PCNL and could effectively reduce the incidence of sepsis through early intervention.


Assuntos
Cálculos Renais , Nefrolitotomia Percutânea , Nefrostomia Percutânea , Sepse , Masculino , Feminino , Humanos , Nefrolitotomia Percutânea/efeitos adversos , Nefrostomia Percutânea/efeitos adversos , Cálculos Renais/cirurgia , Cálculos Renais/complicações , Estudos Retrospectivos , Complicações Pós-Operatórias/diagnóstico , Complicações Pós-Operatórias/etiologia , Sepse/diagnóstico , Sepse/etiologia , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA