Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chem ; 94(24): 8605-8617, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35678711

RESUMO

Neurochemical corelease has received much attention in understanding brain activity and cognition. Despite many attempts, the multiplexed monitoring of coreleased neurochemicals with spatiotemporal precision and minimal crosstalk using existing methods remains challenging. Here, we report a soft neural probe for multiplexed neurochemical monitoring via the electrografting-assisted site-selective functionalization of aptamers on graphene field-effect transistors (G-FETs). The neural probes possess excellent flexibility, ultralight mass (28 mg), and a nearly cellular-scale dimension of 50 µm × 50 µm for each G-FET. As a demonstration, we show that G-FETs with electrochemically grafted molecular linkers (-COOH or -NH2) and specific aptamers can be used to monitor serotonin and dopamine with high sensitivity (limit of detection: 10 pM) and selectivity (dopamine sensor >22-fold over norepinephrine; serotonin sensor >17-fold over dopamine). In addition, we demonstrate the feasibility of the simultaneous monitoring of dopamine and serotonin in a single neural probe with minimal crosstalk and interferences in phosphate-buffered saline, artificial cerebrospinal fluid, and harvested mouse brain tissues. The stability studies show that multiplexed neural probes maintain the capability for simultaneously monitoring dopamine and serotonin with minimal crosstalk after incubating in rat cerebrospinal fluid for 96 h, although a reduced sensor response at high concentrations is observed. Ex vivo studies in harvested mice brains suggest potential applications in monitoring the evoked release of dopamine and serotonin. The developed multiplexed detection methodology can also be adapted for monitoring other neurochemicals, such as metabolites and neuropeptides, by simply replacing the aptamers functionalized on the G-FETs.


Assuntos
Dopamina , Grafite , Animais , Encéfalo/metabolismo , Dopamina/metabolismo , Grafite/química , Camundongos , Norepinefrina , Oligonucleotídeos/metabolismo , Ratos , Serotonina/metabolismo
2.
bioRxiv ; 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37905115

RESUMO

Long-term, real-time molecular monitoring in complex biological environments is critical for our ability to understand, prevent, diagnose, and manage human diseases. Aptamer-based electrochemical biosensors possess the promise due to their generalizability and a high degree of selectivity. Nevertheless, the operation of existing aptamer-based biosensors in vivo is limited to a few hours. Here, we report a first-generation long-term in vivo molecular monitoring platform, named aptamer-graphene microtransistors (AGMs). The AGM incorporates a layer of pyrene-(polyethylene glycol)5-alcohol and DNase inhibitor-doped polyacrylamide hydrogel coating to reduce biofouling and aptamer degradation. As a demonstration of function and generalizability, the AGM achieves the detection of biomolecules such as dopamine and serotonin in undiluted whole blood at 37 °C for 11 days. Furthermore, the AGM successfully captures optically evoked dopamine release in vivo in mice for over one week and demonstrates the capability to monitor behaviorally-induced endogenous dopamine release even after eight days of implantation in freely moving mice. The results reported in this work establish the potential for chronic aptamer-based molecular monitoring platforms, and thus serve as a new benchmark for molecular monitoring using aptamer-based technology.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA