Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Drug Dev Ind Pharm ; 47(12): 1867-1880, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35362347

RESUMO

Nanosuspensions can effectively increase saturation solubility and improve the bioavailability of poorly water-soluble drugs attributed to high loading and surface-to-volume ratio. Wet media milling has been regarded as a scalable method to prepare nanosuspensions because of its simple operation and easy scale-up. In recent years, besides particle aggregation and Ostwald ripening, polymorphic transformation induced by processing has become a critical factor leading to the instability of nanosuspensions. Therefore, this review aims to discuss the influence factors comprehensively and put forward the corresponding improvement strategies of polymorphic transformation during the formation of nanosuspensions. In addition, this review also demonstrates the implication of molecular simulation in polymorphic transformation. The competition between shear-induced amorphization and thermally activated crystallization is the global mechanism of polymorphic transformation during media milling. The factors affecting the polymorphic transformation and corresponding improvement strategies are summarized from formulation and process parameters perspectives during the formation of nanosuspensions. The development of analytical techniques has promoted the qualitative and quantitative characterization of polymorphic transformation, and some techniques can in situ monitor dynamic transformation. The microhydrodynamic model can be referenced to study the stress intensities by analyzing formulation and process parameters during wet media milling. Molecular simulation can be used to explore the possible polymorphic transformation based on the crystal structure and energy. This review is helpful to improve the stability of nanosuspensions by regulating polymorphic transformation, providing quality assurance for nanosuspension-based products.HighlightsPolymorphic transformation depends on the intensity and temperature of milling.Stress intensities of milling can be elucidated and improved by microhydrodynamics.Higher stress intensities of milling perhaps be accompanied by higher temperatures.Molecular simulation used in polymorphs is based on crystal structure and energy.Molecular dynamics simulations can demonstrate the stability of amorphous forms.


Assuntos
Nanopartículas , Composição de Medicamentos/métodos , Nanopartículas/química , Tamanho da Partícula , Solubilidade , Suspensões , Termodinâmica
2.
Planta Med ; 86(8): 538-547, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32294789

RESUMO

Isoliquiritigenin, a flavonoid extracted from licorice root, has been shown to be active against most cancer cells; however, its antitumor activity is limited by its poor water solubility. The aim of this study was to develop a stable isoliquiritigenin nanosuspension for enhanced solubility and to evaluate its in vitro cytostatic activity in A549 cells. The nanosuspension of isoliquiritigenin was prepared through wet media milling with HPC SSL (hydroxypropyl cellulose-SSL) and PVP K30 (polyinylpyrrolidone-K30) as stabilizers, and the samples were then characterized according to particle size, zeta-potential, SEM (scanning electron microscopy), TEM (transmission electron microscopy), DSC (differential scanning calorimetry), XRPD (X-ray powder diffraction), FTIR (Fourier transform infrared spectroscopy), XPS (X-ray photoelectron spectroscopy), and in vitro release. The isoliquiritigenin nanosuspension prepared with HPC SSL and PVP K30 had particle sizes of 238.1 ± 4.9 nm and 354.1 ± 9.1 nm, respectively. Both nanosuspensions showed a surface charge of approximately - 20 mV and a lamelliform or ellipse shape. The dissolution of isoliquiritigenin from the 2 nanosuspensions was markedly higher than that of free isoliquiritigenin. In vitro studies on A549 cells indicated that the cytotoxicity and cellular uptake significantly improved after treatment with both nanosuspensions in comparison to the isoliquiritigenin solution. Furthermore, cell apoptosis analysis showed a 7.5 - 10-fold increase in the apoptosis rate induced by both nanosuspensions compared with pure drug. However, the cytotoxicity of pure drug and nanosuspension on normal cells (HELF) was lower, which indicated both isoliquiritigenin nanosuspensions have low toxicity to normal cells. Therefore, the isoliquiritigenin nanosuspension prepared with HPC SSL and PVP K30 as stabilizers may be a promising approach to improve the solubility and cytostatic activity of isoliquiritigenin.


Assuntos
Neoplasias Pulmonares , Nanopartículas , Células A549 , Disponibilidade Biológica , Chalconas , Estabilidade de Medicamentos , Humanos , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Solubilidade , Suspensões , Difração de Raios X
3.
Int J Pharm ; 632: 122562, 2023 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-36586631

RESUMO

In recent years, polymorphic transformation involved in media milling has become a key factor in inducing the instability of nanosuspensions (NSs). The variation trend of microhydrodynamic parameters, including milling intensity factor (F), can be observed under different milling conditions. Therefore, this study first referenced the microhydrodynamic model to explore how formulations and process parameters affect Irbesartan (IRB) form A crystallinity during wet media milling. As a result, the crystallinity of form A was affected by the intermolecular interactions between drug particles and stabilizers. The crystallinity of form A decreased with decreasing drug loading, increasing stirrer speed and bead loading, which depended on the role of F. Milling could promote the transformation from a 1H to 2H tetrazole ring with stabilizers containing -OH, and form B was changed to form A and finally to an amorphous state. Molecular modelling shows that forms A and B are ductile and fragile materials, respectively, and both present anisotropy. When milling beads hit both polymorphs paralleling to the (010) surface, the bead-bead collisions are more helpful in fracturing IRB particles. The results of this study may provide a foundation for controlling crystal transformation and obtaining ideal crystal forms.


Assuntos
Nanopartículas , Irbesartana , Nanopartículas/química , Composição de Medicamentos/métodos , Tamanho da Partícula , Suspensões
4.
Int J Pharm ; 616: 121522, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35093460

RESUMO

Using nanocrystals (NCs) technology may be a promising drug delivery strategy for oral administration of multicomponent anticancer drugs. However, the intestinal epithelium and the mucus layer on the intestine extremely limited drug transport and absorption by orally. In this study, we selected multicomponent inartificial compound Bufadienolides (BU) with broad spectrum antitumor activity as the model drug to prepare BU NCs with different stabilizers by wet grinding, and explored the efficiency of penetrating through the mucus layer and transporting intestinal epithelial cells in vitro and ex vivo. Results revealed that BU NCs can dramatically improve dissolution behavior synergistically and the efficiency of mucus permeation. Besides, we found that BU NCs with different stabilizers enhanced cellular uptake, which was mainly attributed to increasing or changing the endocytosis pathway and plasma membrane/Endoplasmic reticulum (ER) pathway involved in the transmembrane transport of NCs. Furthermore, BU NCs could definitely improve intestinal absorption efficiency and change the absorption site of BU ex vivo. This multi-angle exploration will provide reference for the development of BU oral delivery formulations.


Assuntos
Bufanolídeos , Nanopartículas , Administração Oral , Absorção Intestinal , Muco/metabolismo , Nanopartículas/química
5.
Expert Opin Drug Deliv ; 18(11): 1643-1657, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34382869

RESUMO

Introduction: The preparation of nanosuspensions by wet media milling is a promising technique that increases the bioavailability of insoluble drugs. The nanosuspension is thermodynamically unstable, where its stability might be influenced by the interaction energy between the stabilizers and the drugs after milling at a specific collision energy. However, it is difficult to screen the stabilizers and the parameters of milling accurately and quickly by using traditional analysis methods. Quantum-molecular mechanics and microhydrodynamic modeling can be applied to improve screening efficiency.Areas covered: Quantum-molecular mechanics model, which includes molecular docking, molecular dynamics simulations, and data on binding energy, provides insights into screening stabilizers based on their molecular behavior at the atomic level. The microhydrodynamic model explores the mechanical processes and energy dissipation in nanomilling, and even combines information on the mechanical modulus and an energy vector diagram for the milling parameters screening of drug crystals.Expert opinion: These modeling methods improve screening efficiency and support screening theories based on thermodynamics and physical dynamics. However, how to reasonably combine different modeling methods with their theoretical characteristics and further multidimensional and cross-scale simulations of nanosuspension formation remain challenges.


Assuntos
Simulação de Dinâmica Molecular , Nanopartículas , Composição de Medicamentos , Simulação de Acoplamento Molecular , Tamanho da Partícula , Solubilidade , Suspensões
6.
Anticancer Agents Med Chem ; 20(18): 2293-2303, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32748761

RESUMO

BACKGROUND: Conventional cancer therapeutics has enormous toxicity and severe side effects that generate multi-drug resistance. Therefore, an urgent need exists for new alternative therapeutic agents for cancer treatment. Cepharanthin (CEP) has anti-cancer potential but has poor aqueous solubility, which limits its clinical use. Nanosuspensions (NS) are attractive as insoluble drug delivery systems. OBJECTIVES: In this study, we used D-alpha Tocopherol acid Polyethylene Glycol Succinate (TPGS), Polyvinylpyrrolidone (PVP) VA64, and Croscamellose Sodium (CCS) as stabilizers to produce TPGS-CEP-NS, PVP VA64-CEP-NS, and CCS-CEP-NS by wet-milling technology, and then characterized the NS and evaluated their functional activities in vitro. METHODS: CEP Nanosuspensions (CEP-NS) were prepared by the wet-milling method. The prepared NS were characterized by particle size distribution, zeta potential, morphology, surface properties, and molecular interactions. The NS were evaluated for their effects on HepG2 cells in vitro. The evaluations included assessment of cellular cytotoxicity, cellular apoptosis, NS uptake by cells, and mitochondrial membrane potential changes. RESULTS: CEP-NS showed an appropriate particle size and were physically stable. All CEP-NS exhibited HepG2 enhanced anti-proliferative effects by reducing cell viability, enhanced cellular uptake, induced cellular apoptosis, and mitochondrial membrane potential loss. CONCLUSIONS: CEP-NS may be effective therapeutic agents for the treatment of hepatocellular carcinoma.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Benzilisoquinolinas/farmacologia , Nanopartículas/química , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/química , Apoptose/efeitos dos fármacos , Benzilisoquinolinas/síntese química , Benzilisoquinolinas/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células Hep G2 , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Estrutura Molecular , Tamanho da Partícula , Relação Estrutura-Atividade , Propriedades de Superfície , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA