Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(8): 7010-7019, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38345334

RESUMO

The negative Poisson's ratio (NPR) effect usually endows materials with promising ductility and shear resistance, facilitating a wider range of applications. It has been generally acknowledged that alloys show strong advantages in manipulating material properties. Thus, a thought-provoking question arises: how does alloying affect the NPR? In this paper, based on first-principles calculations, we systematically study the NPR in two-dimensional (2D) GaN and AlN, and their alloy of AlxGa1-xN. It is intriguing to find that the NPR in AlxGa1-xN is significantly enhanced compared to the parent materials of GaN and AlN. The underlying mechanism mainly originates from a counter-intuitive increase of the bond angle θ. We further study the microscopic origin of the anomalies by electron orbital analysis as well as electron localization functions. It is revealed that the distribution and movement of electrons change with the applied strain, providing a fundamental view on the effect of strain on lattice parameters and the NPR. The physical origin as revealed in this study deepens the understanding of the NPR and shed light on the future design of modern nanoscale electromechanical devices with fantastic functions based on the auxetic nanomaterials and nanostructures.

2.
Nat Commun ; 15(1): 2540, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528017

RESUMO

High-efficient heat dissipation plays critical role for high-power-density electronics. Experimental synthesis of ultrahigh thermal conductivity boron arsenide (BAs, 1300 W m-1K-1) cooling substrates into the wide-bandgap semiconductor of gallium nitride (GaN) devices has been realized. However, the lack of systematic analysis on the heat transfer across the GaN-BAs interface hampers the practical applications. In this study, by constructing the accurate and high-efficient machine learning interatomic potentials, we perform multiscale simulations of the GaN-BAs heterostructures. Ultrahigh interfacial thermal conductance of 260 MW m-2K-1 is achieved, which lies in the well-matched lattice vibrations of BAs and GaN. The strong temperature dependence of interfacial thermal conductance is found between 300 to 450 K. Moreover, the competition between grain size and boundary resistance is revealed with size increasing from 1 nm to 1000 µm. Such deep-potential equipped multiscale simulations not only promote the practical applications of BAs cooling substrates in electronics, but also offer approach for designing advanced thermal management systems.

3.
Artigo em Inglês | MEDLINE | ID: mdl-39143898

RESUMO

Compact reliable structure and strong electromechanical coupling are hot pursuits in piezoelectric vibration energy harvester (PVEH) design. PVEH with a static arc stopper makes piezoelectric stress uniformly distributed and widens the frequency band by collision but wastes space. This Article proposes a hinged PVEH with two arc mass stoppers (AS-H-PVEH). Two arc stoppers as movable masses increase the vibration energy and the effective electromechanical coupling coefficient to achieve strong electromechanical coupling. AS-H-PVEH generates a 4.1 mW power output at 11.6-12.0 Hz and 0.2 g. AS-H-PVEH sustains 4 g acceleration vibration for 10 min without attenuation. To offset the resonance frequency increase caused by arc contact, we discuss the magnetic coupling, and axial force effects are discussed. The design of the arc stopper radius, nonlinear electromechanical coupling model, and system parameter identification method are presented. The displacement varied mechanical quality factor and effective electromechanical coupling coefficient are considered in the modified model for the first time. The model obtained good agreement under experiments. The power generation and driven wireless sensor performance of AS-H-PVEH was verified. This research has important theoretical and application value for the performance optimization of PVEH with an arc stopper.

4.
Microsyst Nanoeng ; 10: 102, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045232

RESUMO

With the rapid development of various fields, including aerospace, industrial measurement and control, and medical monitoring, the need to quantify flow velocity measurements is increasing. It is difficult for traditional flow velocity sensors to fulfill accuracy requirements for velocity measurements due to their small ranges, susceptibility to environmental impacts, and instability. Herein, to optimize sensor performance, a flexible microelectromechanical system (MEMS) thermal flow sensor is proposed that combines the working principles of thermal loss and thermal temperature difference and utilizes a flexible cavity substrate made of a low-thermal-conductivity polyimide/SiO2 (PI/SiO2) composite porous film to broaden the measurement range and improve the sensitivity. The measurement results show that the maximum measurable flow velocity can reach 30 m/s with a resolution of 5.4 mm/s. The average sensitivities of the sensor are 59.49 mV/(m s-1) in the medium-to-low wind velocity range of 0-2 m/s and 467.31 mV/(m s-1) in the wind velocity range of 2-30 m/s. The sensor proposed in this work can enable new applications of flexible flow sensors and wearable devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA