RESUMO
To elucidate the mechanisms and effects of phosphorus (P) desorption on P fractions in soil aggregates of revegetated ecosystems is fundamental for regulating the P supply and biogeochemical cycle. We selected four aggregate sizes (1-5, 0.5-1, 0.25-0.5, and <0.25 mm) from a desert revegetation chronosequence (11, 31, 40, 57, and 65 years) as our study targets and used the Freundlich model to reveal the dynamics of P desorption and changes in P fractions. The results showed that the calibrated model [Formula: see text] for different size aggregates in seven deserts (two natural and five revegetated) described the P desorption characteristics well. In soil aggregates of revegetated deserts, smaller aggregates with higher specific surface area did not desorb more P, nor did older aggregates after revegetation. The natural P desorption process in aggregates resulted in significant changes in Ca2-P, Ca8-P, Al-P and Fe-P fractions (p < 0.05), and revegetation years also affected P fraction dynamics significantly (p < 0.05). This study highlights that the calibrated kinetic model in the revegetated soil aggregates elucidated the P desorption characteristics, and that the P desorption process drove P fraction changes.
Assuntos
Ecossistema , Fósforo , Solo , Fósforo/química , Solo/químicaRESUMO
BACKGROUND: Understanding the stoichiometric characteristics and nutrient allocation strategies of dominant tree species in montane forest systems can provide a basis for decision-making in relation to montane system management. Therefore, according to precipitation and temperature gradients, we selected three typical areas in the Qilian Mountains on the eastern margin of the Qinghai-Tibet Plateau to analyse the spatial relations of plant-soil stoichiometric characteristics and nutrient allocation strategies of plant tissues for Qinghai spruce (Picea crassifolia) along different environmental gradients. RESULTS: 1) The plant and soil stoichiometric characteristics had similar spatial patterns. The C content of plants and soils tended to decrease with increasing latitude, and the N and P contents and the N:P ratio tended to increase with increasing latitude. 2) The stoichiometric characteristics of the plant tissues also interacted with each other and showed synergistic trade-offs. Nutrient allocation in the eastern section of the Qilian Mountains was similar to that in the western section, while more N and P in the plant stems were allocated to maintain plant growth in the relatively arid western Sect. 3) The nutrient allocation strategies in the plant tissues were mainly regulated by soil and climate. CONCLUSIONS: Information on plant-soil stoichiometric characteristics along different gradients can help us better understand the nutrient patterns and dynamics of forest ecosystems under arid and semiarid conditions at a wide geographic scale from the perspective of plant nutrient partitioning.
Assuntos
Ecossistema , Picea , Tibet , Solo , Plantas , Nutrientes , ChinaRESUMO
Mammalian cytosolic thioredoxin reductase (TrxR1) serves as an antioxidant protein by transferring electrons from NADPH to various substrates. The action of TrxR1 is achieved via reversible changes between NADPH-reduced and non-reduced forms, which involves C-terminal selenolthiol/selenenylsulfide exchanges. TrxR1 may be released into extracellular environment, where TrxR1 is present mainly in the non-reduced form with active-site disulfide and selenenylsulfide bonds. The relationships between extracellular TrxR1 and tumor metastasis or cellular signaling have been discovered, but there are few reports on small-molecule compounds in targeted the non-reduced form of TrxR1. Using eight types of small-molecule thiol-reactive reagents as electrophilic models, we report that the selenenylsulfide bond in the non-reduced form of TrxR1 functions as a selector for the thiol-reactive reagents at pH 7.5. The non-reduced form of TrxR1 is resistant to hydrogen peroxide/oxidized glutathione, but is sensitive to certain electrophilic reagents in different ways. With 5,5'-dithiobis-(2-nitrobenzoic acid) (DTNB) and S-nitrosoglutathione (GSNO), the polarized selenenylsulfide bond breaks, and selenolate anion donates electron to the dynamic covalent bond in DTNB or GSNO, forming TNB-S-Se-TrxR1 complex or ON-Se-TrxR1 complex. The both complexes lose the ability to transfer electrons from NADPH to substrate. For diamide, the non-reduced TrxR1 actually prevents irreversible damage by this oxidant. This is consistent with the regained activity of TrxR1 through removal of diamide via dialysis. Diamide shows effective in the presence of human cytosolic thioredoxin (hTrx1), Cys residue(s) of which is/are preferentially affected by diamide to yield disulfide, hTrx1 dimer and the mixed disulfide between TrxR1-Cys497/Sec498 and hTrx1-Cys73. In human serum samples, the non-reduced form of TrxR1 exists as dithiothreitol-reducible polymer/complexes, which might protect the non-reduced TrxR1 from inactivation by certain electrophilic reagents under oxidative conditions, because cleavage of these disulfides can lead to regain the activity of TrxR1. The details of the selective response of the selenenylsulfide bond to electrophilic reagents may provide new information for designing novel small-molecule inhibitors (drugs) in targeted extracellular/non-reduced TrxR1.
RESUMO
Several microRNAs (miRNAs) are expressed at lower levels in specific tumors, e.g., miR-let-7a in non-small cell lung cancer (NSCLC). This makes it challenging to analyze their lower abundance versus specifically elevated miRNAs. Here, we describe a novel fluorescent biosensor for the highly selective and sensitive detection of miR-let-7a constructed by combining miRNA screening assisted by a duplex-specific nuclease (DSN) with CRISPR-Cas12a system signal amplification. We meticulously designed a mismatch in the first three to four bases at the 5'-end of the capture DNA to improve the signal-to-noise ratio of the CRISPR-Cas12a system. Within this "DSN-mismatched CRISPR" fluorescence strategy, miR-let-7a was accurately screened by DSN-assisted cleavage, and the mismatched capture DNA unbound to target miRNA could trigger the CRISPR-Cas12a system to produce a mass of trans-cleave fluorescence signals. This "turn-off" approach was suitable for detecting decreased levels of miRNAs. This approach can not only discriminate the single-base mismatched let-7 family but also reach a limit of detection at 64.17 fM as well as be quantified from 100 fM to 500 pM. The miR-let-7a levels were then measured in clinical serum samples from healthy volunteers and patients with NSCLC. This study holds promise for the development of a universal under-expressed miRNA assay for early diagnosis and treatment of cancers.
Assuntos
Técnicas Biossensoriais , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , MicroRNAs/genética , DNA , CorantesRESUMO
By finely tuning the electrospun parameters (feeding rate of solution, working voltage and distance, etc.) and concentration of inorganic salts, various ZnAl(2)O(4) nanostructures (nanoparticles, nanonecklaces, nanofibers, nanotubes and hollow micromelts) were controllably synthesized by a single-nozzle electrospinning technique. The formation mechanisms of different ZnAl(2)O(4) nanostructures, including 'oriented attachment' mechanism, 'gas-push' mechanism, etc., were proposed to elucidate the morphology of the nanostructures and microstructure evolvement process. The morphology and microstructure of calcined electrospun nanostructures were considered to be mainly dependent on two factors, i.e. concentration of inorganic salts and size of as-prepared electrospun nanofibers. Using Ni(2+) ions as activators, broadband near infrared (NIR) emission covering 1000-1400 nm peaking at about 1176 nm was detected in Ni(2+)-doped ZnAl(2)O(4) nanostructures. The broadband NIR emission at around 1.3 µm optical communication window with a long lifetime of ~640 µs makes Ni(2+)-doped ZnAl(2)O(4) nanostructures as a promising candidate for micro/nano-broadband optical amplifiers, fibers, etc.
RESUMO
Environmental heterogeneity in temperature, moisture, and soil fertility caused by elevation gradients can affect the trade-offs in the survival strategies of tree species. There is uncertainty about the allocation of resources to different tissues of trees in response to the elevation gradient with respect to carbon (C), nitrogen (N), and phosphorus (P). Here, the C, N, and P content of leaves, branches, trunks, and thick and fine roots of Picea crassifolia (Qinghai spruce) and their stoichiometric changes across three different elevations were investigated in the Qilian Mountains. We found that N:P of Qinghai spruce was <14 in all tissues at most elevations, indicating that Qinghai spruce was more susceptible to N limitation. Meanwhile, the N content and N:P of Qinghai spruce each were significantly negatively correlated with temperature (p < 0.05), and its P content was lower at high elevation. The contribution of soil-climate interactions on the elevation gradient to each tissue type was 34.02% (leaves), 16.84% (branches), 67.78% (trunks), 34.74% (thick roots), and 49.84% (fine roots), indicating that interacting climate and soil factors on the elevation gradient predominately drove the C, N, and P content and stoichiometry variation in each tissue type of Qinghai spruce trees. The results of this study clarify that the elevation gradient regulates the elemental content and resource allocation in Qinghai spruce, providing basic data and an important timely reference for future forest management in the regions where coniferous trees grows. These findings also help improve our understanding of elevational patterns of forest ecosystem stoichiometry in arid and semiarid regions.
RESUMO
The spatial variation of leaf functional traits in Phragmites australis could reflect the changes of resource allocation. The coupling relationship between leaf functional traits and soil environmental factors represents the ecological adaptation strategies of clonal plants to heterogeneous environments. The research object clonal plant, P. australis, was selected from an inland wetland in northwest China. We examined leaf functional traits of P. australis and their responses to soil environmental factors in wetland, salt marsh, and desert habitats. The results showed that from wetland to desert habitat, foliar contents of C, N and P decreased by 7.2%, 40.0% and 64.1%, respectively, and N and P use efficiency increased, leaf length, leaf width, leaf area, leaf dry weight, specific leaf area and leaf thickness showed a decreasing trend. The coevolution of leaf functional traits was observed, indicating a significant correlation between leaf nutrient elements and specific leaf area. Soil bulk density, salinity, and water availability were the most important environmental factors driving the variation of leaf functional traits of P. australis in wetland, salt marsh and desert habitats, respectively.
Assuntos
Poaceae , Áreas Alagadas , Folhas de Planta , Plantas , Poaceae/fisiologia , Salinidade , SoloRESUMO
Clonal plants play an important role in determining ecosystem properties such as community stability, species diversity and nutrient cycling. However, relatively little information is available about the stoichiometric characteristics of clonal plants and their drivers in inland riparian wetlands under strong environmental stress. In this manuscript, we studied the clonal plant Phragmites australis in an inland riparian wetland of Northwest China and compared its nutrient distribution and stoichiometry trade-offs as well as its responses to soil environmental factors in three different environments, namely, a wetland, a salt marsh, and a desert. We found that (1) P. australis could adapt to heterogeneous environments by changing its nutrient allocation strategies, as evidenced by the significant decrease in N and P concentrations, and significant increase in whole-plant C:P and N:P ratios from the wetland to the desert habitats. (2) P. australis adapted to stressful environments by changing its nutrient allocation patterns among different modules, showing a greater tendency to invest N and P in underground modules (rhizomes and roots) and an increase in the utilization efficiency of N and P in the leaves, and stems as environmental stress increased. (3) The C-N, C-P, and N:P-C in the whole plant and in each module showed significant anisotropic growth relationships in the three habitats (P < 0.05). (4) Soil water, pH and salt were the main factors limiting nutrient stoichiometry. The results of this study clarified the ecological adaptation mechanism of the clonal plant P. australis to heterogeneous environments and provided targeted protection strategies for inland riparian wetlands in Northwest China.
RESUMO
Overnutrition can lead to oxidative stress, but its underlying mechanism remains unclear. In this study, we report that human liver-derived HepG2 cells utilize cytosolic thioredoxin reductase (TrxR1) and thioredoxin (hTrx1) to defend against the high glucose/palmitate-mediated increase in reactive oxygen species. However, enhanced TrxR1/hTrx1 palmitoylation occurs in parallel with a decrease in their activities under the conditions studied here. An autoacylation process appears to be the major mechanism for generating palmitoylated TrxR1/Trx1 in HepG2 cells. A novel feature of this post-translational modification is the covalent inhibition of TrxR1/hTrx1 by palmitoyl-CoA, an activated form of palmitate. The palmitoyl-CoA/TrxR1 reaction is NADPH-dependent and produces palmitoylated TrxR1 at an active site selenocysteine residue. Conversely, S-palmitoylation occurs at the structural Cys62/Cys69/Cys72 residues but not the active site Cys32/Cys35 residues of hTrx1. Palmitoyl-CoA concentration and the period of incubation with TrxR1/hTrx1 are important factors that influence the inhibitory efficacy of palmitoyl-CoA on TrxR1/hTrx1. Thus, an increase in TrxR1/hTrx1 palmitoylation could be a potential consequence of high glucose/palmitate. The time-dependent inactivation of the NADPH-TrxR1-Trx1 system by palmitoyl-CoA occurs in a biphasic manner - a fast phase followed by a slow phase. Kinetic analysis suggests that the fast phase is consistent with a fast and reversible association between TrxR1/hTrx1 and palmitoyl-CoA. The slow phase is correlated with a slow and irreversible inactivation, in which selenolate/thiolate groups nucleophilically attack the α-carbon of bound palmitoyl-CoA, leading to the formation of thioester/selenoester bonds. hTrx1 can enhance rate of fast phase but limits the rate of slow phase when it is present in a preincubation mixture containing NADPH, TrxR1 and palmitoyl-CoA. Therefore, hTrx1 may provide palmitoylation sites or partially protect the TrxR1 active site selenol/thiol group(s) from palmitoylation. Our data suggest that Se/S-palmitoylation acts as an important modulator of TrxR1/hTrx1 activities, representing a novel potential mechanism that underlies overnutrition-induced events.
Assuntos
Citosol/enzimologia , Lipoilação , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/metabolismo , Tiorredoxinas/antagonistas & inibidores , Tiorredoxinas/metabolismo , Sequência de Aminoácidos , Animais , Domínio Catalítico , Bovinos , Glucose/farmacologia , Células Hep G2 , Humanos , Lipoilação/efeitos dos fármacos , Dados de Sequência Molecular , Oxirredução/efeitos dos fármacos , Palmitatos/farmacologia , Palmitoil Coenzima A/farmacologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Tiorredoxina Dissulfeto Redutase/química , Tiorredoxinas/química , Fatores de TempoRESUMO
High-fat diet (HFD) can induce oxidative stress. Thioredoxin (Trx) and thioredoxin reductase (TrxR) are critical antioxidant proteins but how they are affected by HFD remains unclear. Using HFD-induced insulin-resistant mouse model, we show here that liver Trx and TrxR are significantly decreased, but, remarkably, the degree of their S-acylation is increased after consuming HFD. These HFD-induced changes in Trx/TrxR may reflect abnormalities of lipid metabolism and insulin signaling transduction. HFD-driven accumulation of 4-hydroxynonenal is another potential mechanism behind inactivation and decreased expression of Trx/TrxR. Thus, we propose HFD-induced impairment of liver Trx/TrxR as major contributor to oxidative stress and as a novel feature of insulin resistance.