Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 322
Filtrar
1.
Cell ; 184(13): 3542-3558.e16, 2021 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-34051138

RESUMO

Structural variations (SVs) and gene copy number variations (gCNVs) have contributed to crop evolution, domestication, and improvement. Here, we assembled 31 high-quality genomes of genetically diverse rice accessions. Coupling with two existing assemblies, we developed pan-genome-scale genomic resources including a graph-based genome, providing access to rice genomic variations. Specifically, we discovered 171,072 SVs and 25,549 gCNVs and used an Oryza glaberrima assembly to infer the derived states of SVs in the Oryza sativa population. Our analyses of SV formation mechanisms, impacts on gene expression, and distributions among subpopulations illustrate the utility of these resources for understanding how SVs and gCNVs shaped rice environmental adaptation and domestication. Our graph-based genome enabled genome-wide association study (GWAS)-based identification of phenotype-associated genetic variations undetectable when using only SNPs and a single reference assembly. Our work provides rich population-scale resources paired with easy-to-access tools to facilitate rice breeding as well as plant functional genomics and evolutionary biology research.


Assuntos
Ecótipo , Variação Genética , Genoma de Planta , Oryza/genética , Adaptação Fisiológica/genética , Agricultura , Domesticação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Variação Estrutural do Genoma , Anotação de Sequência Molecular , Fenótipo
2.
Cell ; 170(1): 114-126.e15, 2017 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-28666113

RESUMO

Rice feeds half the world's population, and rice blast is often a destructive disease that results in significant crop loss. Non-race-specific resistance has been more effective in controlling crop diseases than race-specific resistance because of its broad spectrum and durability. Through a genome-wide association study, we report the identification of a natural allele of a C2H2-type transcription factor in rice that confers non-race-specific resistance to blast. A survey of 3,000 sequenced rice genomes reveals that this allele exists in 10% of rice, suggesting that this favorable trait has been selected through breeding. This allele causes a single nucleotide change in the promoter of the bsr-d1 gene, which results in reduced expression of the gene through the binding of the repressive MYB transcription factor and, consequently, an inhibition of H2O2 degradation and enhanced disease resistance. Our discovery highlights this novel allele as a strategy for breeding durable resistance in rice.


Assuntos
Oryza/genética , Proteínas de Plantas/genética , Fatores de Transcrição/genética , Sequência de Bases , Cruzamento , Resistência à Doença , Técnicas de Inativação de Genes , Genoma de Planta , Estudo de Associação Genômica Ampla , Doenças das Plantas , Regiões Promotoras Genéticas
3.
Plant Mol Biol ; 114(1): 10, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38319430

RESUMO

Quinoa seeds are gluten- and cholesterol-free, contain all amino acids required by the human body, have a high protein content, provide endocrine regulation, protein supplementation, and cardiovascular protection effects. However, metabolite accumulation and transcriptional regulatory networks in quinoa seed development are not well understood. Four key stages of seed development in Dianli-3260 and Dianli-557 were thus analyzed and 849 metabolites were identified, among which sugars, amino acids, and lipids were key for developmental processes, and their accumulation showed a gradual decrease. Transcriptome analysis identified 40,345 genes, of which 20,917 were differential between the M and F phases, including 8279 and 12,638 up- and down-regulated genes, respectively. Grain development processes were mainly enriched in galactose metabolism, pentose and glucuronate interconversions, the biosynthesis of amino acids, and carbon metabolism pathways, in which raffinose, phosphoenolpyruvate, series and other metabolites are significantly enriched, gene-LOC110689372, Gene-LOC110710556 and gene-LOC110714584 are significantly expressed, and these metabolites and genes play an important role in carbohydrate metabolism, lipid and Amino acid synthesis of quinoa. This study provides a theoretical basis to expand our understanding of the molecular and metabolic development of quinoa grains.


Assuntos
Chenopodium quinoa , Transcriptoma , Humanos , Chenopodium quinoa/genética , Metaboloma/genética , Sementes/genética , Aminoácidos
4.
BMC Plant Biol ; 24(1): 319, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38654176

RESUMO

Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most important diseases of wheat worldwide. Identification of new and elite Pst-resistance loci or genes has the potential to enhance overall resistance to this pathogen. Here, we conducted an integrated genome-wide association study (GWAS) and transcriptomic analysis to screen for loci associated with resistance to stripe rust in 335 accessions from Yunnan, including 311 landraces and 24 cultivars. Based on the environmental phenotype, we identified 113 protein kinases significantly associated with Pst resistance using mixed linear model (MLM) and generalized linear model (GLM) models. Transcriptomic analysis revealed that 52 of 113 protein kinases identified by GWAS were up and down regulated in response to Pst infection. Among these genes, a total of 15 receptor kinase genes were identified associated with Pst resistance. 11 candidate genes were newly discovered in Yunnan wheat germplasm. Our results revealed that resistance alleles to stripe rust were accumulated in Yunnan wheat germplasm, implying direct or indirect selection for improving stripe rust resistance in elite wheat breeding programs.


Assuntos
Resistência à Doença , Estudo de Associação Genômica Ampla , Doenças das Plantas , Puccinia , Triticum , Triticum/genética , Triticum/microbiologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Resistência à Doença/genética , China , Puccinia/fisiologia , Perfilação da Expressão Gênica , Basidiomycota/fisiologia , Genes de Plantas , Proteínas Quinases/genética , Transcriptoma , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
New Phytol ; 242(6): 2555-2569, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38594216

RESUMO

Gibberellic acid (GA) plays a central role in many plant developmental processes and is crucial for crop improvement. DELLA proteins, the core suppressors in the GA signaling pathway, are degraded by GA via the 26S proteasomal pathway to release the GA response. However, little is known about the phosphorylation-mediated regulation of DELLA proteins. In this study, we combined GA response assays with protein-protein interaction analysis to infer the connection between Arabidopsis thaliana DELLAs and the C-TERMINAL DOMAIN PHOSPHATASE-LIKE 3 (CPL3), a phosphatase involved in the dephosphorylation of RNA polymerase II. We show that CPL3 directly interacts with DELLA proteins and promotes DELLA protein stability by inhibiting its degradation by the 26S proteasome. Consequently, CPL3 negatively modulates multiple GA-mediated processes of plant development, including hypocotyl elongation, flowering time, and anthocyanin accumulation. Taken together, our findings demonstrate that CPL3 serves as a novel regulator that could improve DELLA stability and thereby participate in GA signaling transduction.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Flores , Regulação da Expressão Gênica de Plantas , Giberelinas , Ligação Proteica , Giberelinas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/crescimento & desenvolvimento , Flores/genética , Proteólise , Estabilidade Proteica , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Transdução de Sinais , Antocianinas/metabolismo , Fosforilação
6.
Biotechnol Bioeng ; 121(3): 971-979, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38088450

RESUMO

The methylotrophic yeast Pichia pastoris (Komagataella phaffii) is a highly distinguished expression platform for the excellent synthesis of various heterologous proteins in recent years. With the advantages of high-density fermentation, P. pastoris can produce gram amounts of recombinant proteins. While not every protein of interest can be expressed to such high titers, such as Baeyer-Villiger monooxygenase (BVMO) (AcPSMO) which is responsible for pyrazole sulfide asymmetric oxidation. In this work, an excellent yeast expression system was established to facilitate efficient AcPSMO expression, which exhibited 9.5-fold enhanced secretion. Subsequently, an ultrahigh throughput screening method based on fluorescence-activated cell sorting by fusing super folder green fluorescent protein (sfGFP) in the C-terminal of AcPSMO was developed, and directed evolution was performed. The protein expression level of the superior mutant AcPSMOP1 (S58T/T252P/E336N/H456D) reached 84.6 mg/L at 100 mL shaking flask, which was 4.7 times higher than the levels obtained with the wild-type. Finally, the optimized chassis cells were used for high-density fermentation on a 5-L scale, and AcPSMOP1 protein yield of 3.4 g/L was achieved, representing approximately 85% of the total protein secreted. By directly employing the pH-adjusted supernatant as a biocatalyst, 20 g/L pyrmetazole sulfide was completely transformed into the corresponding (S)-sulfoxide, with a 78.8% isolated yield. This work confers dramatic benefits for efficient secretion of other BVMOs in P. pastoris.


Assuntos
Oxigenases de Função Mista , Pichia , Saccharomycetales , Oxigenases de Função Mista/metabolismo , Pichia/genética , Pichia/metabolismo , Proteínas Recombinantes/metabolismo , Sulfóxidos/metabolismo , Sulfetos/metabolismo
7.
Mol Breed ; 44(1): 4, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38225950

RESUMO

Improving quality is an essential goal of rice breeding and production. However, rice quality is not solely determined by genotype, but is also influenced by the environment. Phenotype plasticity refers to the ability of a given genotype to produce different phenotypes under different environmental conditions, which can be a representation of the stability of traits. Seven quality traits of 141 hybrid combinations, deriving from the test-crossing of 7 thermosensitive genic male sterile (TGMS) and 25 restorer lines, were evaluated at 5 trial sites with intermittent sowing of three to five in Southern China. In the Yangtze River Basin, it was observed that delaying the sowing time of hybrid rice combinations leads to an improvement in their overall quality. Twelve parents were identified to have lower plasticity general combing ability (GCA) values with increased ability to produce hybrids with a more stable quality. The parents with superior quality tend to exhibit lower GCA values for plasticity. The genome-wide association study (GWAS) identified 13 and 15 quantitative trait loci (QTLs) associated with phenotype plasticity and BLUP measurement, respectively. Notably, seven QTLs simultaneously affected both phenotype plasticity and BLUP measurement. Two cloned rice quality genes, ALK and GL7, may be involved in controlling the plasticity of quality traits in hybrid rice. The direction of the genetic effect of the QTL6 (ALK) on alkali spreading value (ASV) plasticity varies in different cropping environments. This study provides novel insights into the dynamic genetic basis of quality traits in response to different cropping regions, cultivation practices, and changing climates. These findings establish a foundation for precise breeding and production of stable and high-quality rice. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-024-01442-3.

8.
Plant Cell Rep ; 43(3): 67, 2024 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-38341832

RESUMO

KEY MESSAGE: In this study, genome-wide association studies combined with transcriptome data analysis were utilized to reveal potential candidate genes for stripe rust resistance in wheat, providing a basis for screening wheat varieties for stripe rust resistance. Wheat stripe rust, which is caused by the wheat stripe rust fungus (Puccinia striiformis f. sp. tritici, Pst) is one of the world's most devastating diseases of wheat. Genetic resistance is the most effective strategy for controlling diseases. Although wheat stripe rust resistance genes have been identified to date, only a few of them confer strong and broad-spectrum resistance. Here, the resistance of 335 wheat germplasm resources (mainly wheat landraces) from southwestern China to wheat stripe rust was evaluated at the adult stage. Combined genome-wide association study (GWAS) and weighted gene co-expression network analysis (WGCNA) based on RNA sequencing from stripe rust resistant accession Y0337 and susceptible accession Y0402, five candidate resistance genes to wheat stripe rust (TraesCS1B02G170200, TraesCS2D02G181000, TraesCS4B02G117200, TraesCS6A02G189300, and TraesCS3A02G122300) were identified. The transcription level analyses showed that these five genes were significantly differentially expressed between resistant and susceptible accessions post inoculation with Pst at different times. These candidate genes could be experimentally transformed to validate and manipulate fungal resistance, which is beneficial for the development of the wheat cultivars resistant to stripe rust.


Assuntos
Basidiomycota , Estudo de Associação Genômica Ampla , Triticum/genética , Triticum/microbiologia , Resistência à Doença/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , China
9.
BMC Public Health ; 24(1): 494, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38365650

RESUMO

BACKGROUND: Quantitative evidence on the impact of meteorological factors on influenza transmissibility across different virus types/subtypes is scarce, and no previous studies have reported the effect of hourly temperature variability (HTV) on influenza transmissibility. Herein, we explored the associations between meteorological factors and influenza transmissibility according to the influenza type and subtype in Guangzhou, a subtropical city in China. METHODS: We collected influenza surveillance and meteorological data of Guangzhou between October 2010 and December 2019. Influenza transmissibility was measured using the instantaneous effective reproductive number (Rt). A gamma regression with a log link combined with a distributed lag non-linear model was used to assess the associations of daily meteorological factors with Rt by influenza types/subtypes. RESULTS: The exposure-response relationship between ambient temperature and Rt was non-linear, with elevated transmissibility at low and high temperatures. Influenza transmissibility increased as HTV increased when HTV < around 4.5 °C. A non-linear association was observed between absolute humidity and Rt, with increased transmissibility at low absolute humidity and at around 19 g/m3. Relative humidity had a U-shaped association with influenza transmissibility. The associations between meteorological factors and influenza transmissibility varied according to the influenza type and subtype: elevated transmissibility was observed at high ambient temperatures for influenza A(H3N2), but not for influenza A(H1N1)pdm09; transmissibility of influenza A(H1N1)pdm09 increased as HTV increased when HTV < around 4.5 °C, but the transmissibility decreased with HTV when HTV < 2.5 °C and 3.0 °C for influenza A(H3N2) and B, respectively; positive association of Rt with absolute humidity was witnessed for influenza A(H3N2) even when absolute humidity was larger than 19 g/m3, which was different from that for influenza A(H1N1)pdm09 and influenza B. CONCLUSIONS: Temperature variability has an impact on influenza transmissibility. Ambient temperature, temperature variability, and humidity influence the transmissibility of different influenza types/subtypes discrepantly. Our findings have important implications for improving preparedness for influenza epidemics, especially under climate change conditions.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Influenza Humana/epidemiologia , Vírus da Influenza A Subtipo H3N2 , Conceitos Meteorológicos , Temperatura , Umidade , China/epidemiologia
10.
Tohoku J Exp Med ; 262(3): 173-180, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38123304

RESUMO

SKI-349 is a novel sphingosine kinases (SPHK) inhibitor with anti-tumor effects. This study aimed to assess the effect of SKI-349 on cell biological behaviors, downstream pathways, and its synergistic effect with sorafenib in hepatocellular carcinoma (HCC). HCC cell lines (Huh7 and Hep3B) were treated with SKI-349 at concentrations of 1, 2, 4, or 8 µM. Then, SPHK1/2 activity, cell viability, proliferation, apoptosis, invasion, and protein expressions of phosphorylated-protein kinase B (p-AKT), AKT, phosphorylated-mammalian target of rapamycin (p-mTOR) and mTOR were detected. Combination index values of SKI-349 (0, 1, 2, 4, or 8 µM) and sorafenib (0, 2.5, 5, 10, or 20 µM) were calculated. SKI-349 decreased the relative SPHK1 and SPHK2 activity compared with blank control in a dose-dependent manner in the Huh7 and Hep3B cell lines. Meanwhile, SKI-349 reduced cell viability, 5-ethynyl-2'-deoxyuridine (EdU) positive cells, and invasive cells, while it increased apoptotic cells compared to blank control in a dose-dependent manner in Huh7 and Hep3B cell lines. Based on the western blot assay, SKI-349 decreased the ratio of p-AKT to AKT and that of p-mTOR to mTOR compared with blank control in a dose-dependent manner in the Huh7 and Hep3B cell lines. Additionally, SKI-349 combined with sorafenib declined cell viability with concentration gradient effects compared to SKI-349 sole treatment, and they had synergistic cytotoxic effects in Huh7 and Hep3B cell lines. SKI-349 suppresses SPHK1 and SPHK2 activity, cell viability, invasion, and AKT/mTOR signaling pathway, as well as exhibits a synergistic cytotoxic effect with sorafenib in HCC.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Esfingosina/farmacologia , Esfingosina/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sobrevivência Celular , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Niacinamida/farmacologia , Compostos de Fenilureia/farmacologia , Compostos de Fenilureia/uso terapêutico , Linhagem Celular Tumoral , Transdução de Sinais , Antineoplásicos/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/uso terapêutico , Apoptose , Proliferação de Células
11.
Int J Mol Sci ; 25(13)2024 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-38999994

RESUMO

Quinoa is a nutritious crop that is tolerant to extreme environmental conditions; however, low-temperature stress can affect quinoa growth, development, and quality. Considering the lack of molecular research on quinoa seedlings under low-temperature stress, we utilized a Weighted Gene Co-Expression Network Analysis to construct weighted gene co-expression networks associated with physiological indices and metabolites related to low-temperature stress resistance based on transcriptomic data. We screened 11 co-expression modules closely related to low-temperature stress resistance and selected 12 core genes from the two modules that showed the highest associations with the target traits. Following the functional annotation of these genes to determine the key biological processes and metabolic pathways involved in low-temperature stress, we identified four important transcription factors involved in resistance to low-temperature stress: gene-LOC110731664, gene-LOC110736639, gene-LOC110684437, and gene-LOC110720903. These results provide insights into the molecular genetic mechanism of quinoa under low-temperature stress and can be used to breed lines with tolerance to low-temperature stress.


Assuntos
Chenopodium quinoa , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Plântula , Chenopodium quinoa/genética , Plântula/genética , Plântula/crescimento & desenvolvimento , Temperatura Baixa , Resposta ao Choque Frio/genética , Estresse Fisiológico/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilação da Expressão Gênica/métodos , Transcriptoma , Genes de Plantas
12.
J Sci Food Agric ; 104(7): 4109-4127, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38308467

RESUMO

BACKGROUND: Yunnan hulled wheat grains (YHWs) have abundant phenolic compounds (PCs). However, a systematic elucidation of the phenolic characteristics and molecular basis in YHWs is currently lacking. The aim of the study, for the first time, was to conduct metabolomic and transcriptomic analyses of YHWs at different developmental stages. RESULTS: A total of five phenolic metabolite classes (phenolic acids, flavonoids, quinones, lignans and coumarins, and tannins) and 361 PCs were identified, with flavonoids and phenolic acids being the most abundant components. The relative abundance of the identified PCs showed a dynamic decreasing pattern with grain development, and the most significant differences in accumulation were between the enlargement and mature stage, which is consistent with the gene regulation patterns of the corresponding phenolic biosynthesis pathway. Through co-expression and co-network analysis, PAL, HCT, CCR, F3H, CHS, CHI and bZIP were identified and predicted as candidate key enzymes and transcription factors. CONCLUSION: The results broaden our understanding of PC accumulation in wheat whole grains, especially the differential transfer between immature and mature grains. The identified PCs and potential regulatory factors provide important information for future in-depth research on the biosynthesis of PCs and the improvement of wheat nutritional quality. © 2024 Society of Chemical Industry.


Assuntos
Fenóis , Triticum , Triticum/química , China , Fenóis/análise , Metaboloma , Perfilação da Expressão Gênica , Flavonoides/metabolismo , Transcriptoma , Regulação da Expressão Gênica de Plantas
13.
BMC Genomics ; 24(1): 399, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454047

RESUMO

BACKGROUND: Quinoa is a highly nutritious and novel crop that is resistant to various abiotic stresses. However, its growth and development is restricted due to its limited utilization of soil phosphorus. Studies on the levels of phosphorus in quinoa seedlings are limited; therefore, we analyzed transcriptome data from quinoa seedlings treated with different concentrations of phosphorus. RESULTS: To identify core genes involved in responding to various phosphorus levels, the weighted gene co-expression network analysis method was applied. From the 12,085 expressed genes, an analysis of the gene co-expression network was done. dividing the expressed genes into a total of twenty-five different modules out of which two modules were strongly correlated with phosphorus levels. Subsequently we identified five core genes that correlated strongly either positively or negatively with the phosphorus levels. Gene ontology and assessments of the Kyoto Encyclopedia of Genes and Genomes have uncovered important biological processes and metabolic pathways that are involved in the phosphorus level response. CONCLUSIONS: We discovered crucial new core genes that encode proteins from various transcription factor families, such as MYB, WRKY, and ERF, which are crucial for abiotic stress resistance. This new library of candidate genes associated with the phosphorus level responses in quinoa seedlings will help in breeding varieties that are tolerant to phosphorus levels.


Assuntos
Chenopodium quinoa , Plântula , Plântula/genética , Plântula/metabolismo , Chenopodium quinoa/genética , Chenopodium quinoa/metabolismo , Fósforo/metabolismo , Melhoramento Vegetal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas
14.
Cancer Immunol Immunother ; 72(2): 385-395, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35907016

RESUMO

BACKGROUND: High hepatitis B virus (HBV) DNA level is an independent risk factor for postoperative HBV-associated liver cancer recurrence. We sought to examine whether HBV DNA level and antiviral therapy are associated with survival outcomes in patients with advanced hepatocellular carcinoma (HCC) treated with anti-programmed cell death protein 1 (PD-1)based immunotherapy. METHODS: This single-institution retrospective analysis included 217 patients with advanced HBV-related HCC treated from 1 June 2018, through 30 December 2020. Baseline information was compared between patients with low and high HBV DNA levels. Overall survival (OS) and progression-free survival (PFS) were compared, and univariate and multivariate analyses were applied to identify potential risk factors for oncologic outcomes. RESULTS: The 217 patients included in the analysis had a median survival time of 20.6 months. Of these HBV-associated HCC patients, 165 had known baseline HBV DNA levels. Baseline HBV DNA level was not significantly associated with OS (P = 0.59) or PFS (P = 0.098). Compared to patients who did not receive antiviral therapy, patients who received antiviral therapy had significantly better OS (20.6 vs 11.1 months, P = 0.020), regardless of HBV DNA levels. Moreover, antiviral status (adjusted HR = 0.24, 95% CI 0.094-0.63, P = 0.004) was an independent protective factor for OS in a multivariate analysis of patients with HBV-related HCC. CONCLUSIONS: HBV viral load does not compromise the clinical outcome of patients with HBV-related HCC treated with anti-PD-1-based immunotherapy. The use of antiviral therapy significantly improves survival time of HBV-related HCC patients.


Assuntos
Carcinoma Hepatocelular , Hepatite B Crônica , Inibidores de Checkpoint Imunológico , Neoplasias Hepáticas , Humanos , Antivirais/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/virologia , DNA Viral , Hepatite B Crônica/complicações , Hepatite B Crônica/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/virologia , Recidiva Local de Neoplasia/tratamento farmacológico , Estudos Retrospectivos
15.
BMC Plant Biol ; 23(1): 292, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264351

RESUMO

BACKGROUND: Quinoa (Chenopodium quinoa Willd.) originates in high altitude areas, such as the Andes, and has some inherent characteristics of cold, drought, and salinity tolerance, but is sensitive to high temperature. RESULTS: To gain insight into the response mechanism of quinoa to high temperature stress, we conducted an extensive targeted metabolomic study of two cultivars, Dianli-3101 and Dianli-3051, along with a combined transcriptome analysis. A total of 794 metabolites and 54,200 genes were detected, in which the genes related to photosynthesis were found down-regulated at high temperatures, and two metabolites, lipids and flavonoids, showed the largest changes in differential accumulation. Further analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and transcription factors revealed that quinoa inhibits photosynthesis at high temperatures, and the possible strategies being used for high temperature stress management are regulation of heat stress transcription factors (HSFs) to obtain heat tolerance, and regulation of purine metabolism to enhance stress signals for rapid response to high temperature stress. The tolerant genotype could have an enhanced response through lower purine levels. The induction of the stress response could be mediated by HSF transcription factors. The results of this study may provide theoretical references for understanding the response mechanism of quinoa to high temperature stress, and for screening potential high temperature tolerant target genes and high temperature tolerant strains. CONCLUSIONS: These findings reveal the regulation of the transcription factor family HSF and the purinergic pathway in response to high temperature stress to improve quinoa varieties with high temperature tolerance.


Assuntos
Chenopodium quinoa , Plântula , Plântula/genética , Chenopodium quinoa/fisiologia , Temperatura , Transcriptoma , Perfilação da Expressão Gênica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
16.
Planta ; 258(3): 63, 2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37543957

RESUMO

MAIN CONCLUSION: Blue light has a greater effect on jasmonic acid and flavonoid accumulation in wheat seeds than red light; blue light reduces starch synthesis and the size of starch granules and seeds. This study sought to elucidate the effects of blue and red light on seed metabolism to provide important insights regarding the role of light quality in regulating seed growth and development. We used combined multi-omics analysis to investigate the impact of red and blue light (BL) on the induction of secondary metabolite accumulation in the hexaploid wheat Dianmai 3 after pollination. Flavonoids and alkaloids were the most differentially abundant metabolites detected under different treatments. Additionally, we used multi-omics and weighted correlation network analysis to screen multiple candidate genes associated with jasmonic acid (JA) and flavonoids. Expression regulatory networks were constructed based on RNA-sequencing data and their potential binding sites. The results revealed that BL had a greater effect on JA and flavonoid accumulation in wheat seeds than red light. Furthermore, BL reduced starch synthesis and stunted the size of starch granules and seeds. Collectively, these findings clarify the role of BL in the metabolic regulation of early seed development in wheat.


Assuntos
Sementes , Triticum , Triticum/genética , Triticum/metabolismo , Flavonoides/metabolismo , Amido/metabolismo , Regulação da Expressão Gênica de Plantas
17.
Appl Environ Microbiol ; 89(10): e0060123, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37768087

RESUMO

Ocean warming profoundly impacts microbes in marine environments; yet, how lifestyle (e.g., free living versus biofilm associated) affects the bacterial response to rising temperature is not clear. Here, we compared transcriptional, enzymatic, and physiological responses of free-living and biofilm-associated Leisingera aquaemixtae M597, a member of the Roseobacteraceae family isolated from marine biofilms, to the increase in temperature from 25℃ to 31℃. Complete genome sequencing and metagenomics revealed the prevalence of M597 in global ocean biofilms. Transcriptomics suggested a significant effect on the expression of genes related to carbohydrate metabolism, nitrogen and sulfur metabolism, and phosphorus utilization of free-living M597 cells due to temperature increase, but such drastic alterations were not observed in its biofilms. In the free-living state, the transcription of the key enzyme participating in the Embden-Meyerhof-Parnas pathway was significantly increased due to the increase in temperature, accompanied by a substantial decrease in the Entner-Doudoroff pathway, but transcripts of these glycolytic enzymes in biofilm-forming strains were independent of the temperature variation. The correlation between the growth condition and the shift in glycolytic pathways under temperature change was confirmed by enzymatic activity assays. Furthermore, the rising temperature affected the growth rate and the production of intracellular reactive oxygen species when M597 cells were free living rather than in biofilms. Thus, biofilm formation stabilizes metabolism in M597 when grown under high temperature and this homeostasis is probably related to the glycolytic pathways.IMPORTANCEBiofilm formation is one of the most successful strategies employed by microbes against environmental fluctuations. In this study, using a marine Roseobacteraceae bacterium, we studied how biofilm formation affects the response of marine bacteria to the increase in temperature. This study enhances our understanding of the function of bacterial biofilms and the microbe-environment interactions in the framework of global climate change.


Assuntos
Bactérias , Metabolismo dos Carboidratos , Temperatura , Bactérias/genética , Glicólise , Biofilmes
18.
J Exp Bot ; 74(12): 3544-3559, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-36964899

RESUMO

Grain chalkiness is an important index of rice appearance quality and is negatively associated with rice processing and eating quality. However, the genetic mechanism underlying chalkiness formation is largely unknown. To identify the genetic basis of chalkiness, 410 recombinant inbred lines (RILs) derived from two representative indica rice varieties, Shuhui498 (R498) and Yihui3551 (R3551), were used to discover quantitative trait loci (QTLs). The two parental lines and RILs were grown in three locations in China under three controlled fertilizer application levels. Analyses indicated that chalkiness was significantly affected by genotype, the environment, and the interaction between the two, and that heritability was high. Several QTLs were isolated, including the two stable QTLs qCGP6 and qCGP8. Fine mapping and candidate gene verification of qCGP6 showed that Wx may play a key role in chalkiness formation. Chromosomal segment substitution lines (CSSLs) and near-isogenic lines (NILs) carrying the Wxa or Wxin allele produced more chalky grain than the R498 parent. A similar result was also observed in the 3611 background. Notably, the effect of the Wx genotype on rice chalkiness was shown to be dependent on environmental conditions, and Wx alleles exhibited different sensitivities to shading treatment. Using clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 (Cas9), the Wxa promoter region was successfully edited; down-regulating Wx alleviates chalkiness formation in NILR498-Wxa. This study developed a new strategy for synergistic improvement of eating and appearance qualities in rice, and created a novel Wx allele with great potential in breeding applications.


Assuntos
Oryza , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Melhoramento Vegetal , Grão Comestível/genética , Genótipo , China , Oryza/genética
19.
Inorg Chem ; 62(42): 17236-17240, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37816176

RESUMO

Considerable progress in the construction of efficient fluorescence-resonance energy transfer (FRET) systems has promoted the development of artificial energy transfer materials. However, despite recent advances, the exploration of efficient and easy strategies to fabricate novel supramolecular systems with FRET activities is still a challenge. Here, we report that a two-step FRET system was successfully achieved, driven by platinum metallacycle based host-guest interactions. The two-step FRET system is used for the preparation of a white-light-emitting diode and serves as a nanoreactor for the photosynthetic process. This work offers a strategy for the fabrication of FRET systems and opens opportunities for functional materials constructed by platinum(II) metallacycle based host-guest interactions.

20.
Environ Res ; 239(Pt 2): 117423, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37858687

RESUMO

Lead (Pb) accumulation can lead to serious threats to surrounding environments and damage to the liver and kidneys. In the past few years, microbial-induced carbonate precipitation (MICP) technology has been widely applied to achieve Pb immobilization due to its environmentally friendly nature. However, harsh pH conditions can cause the instability of the carbonate precipitation to degrade or dissolve, increasing the potential of Pb2+ migration into nearby environments. In this study, microcapsule-based self-healing microbial-induced calcium carbonate (MICC) materials were applied to prevent Pb migration. The highest sporulation rate of 95.8% was attained at 7 g/L yeast extract, 10 g/L NH4Cl, and 3.6 g/L Mn2+. In the germination phase, the microcapsule not only prevented the bacterial spores from being threatened by the acid treatment but secured their growth and reproduction. Micro analysis also revealed that cerussite, calcite, and aragonite minerals were present, while extracellular polymeric substances (EPSs) were identified via Fourier transform infrared spectroscopy (FTIR). These results confirm their involvement in combining Pb2+ and Ca2+. The immobilization efficiency of above 90% applied to MICC materials was attained, while it of below 5% applied to no MICC use was attained. The findings explore the potential of applying microcapsule-based self-healing MICC materials to prevent Pb ion migration when the calcium carbonate degrades under harsh pH conditions.


Assuntos
Carbonato de Cálcio , Chumbo , Carbonato de Cálcio/química , Carbonato de Cálcio/metabolismo , Cápsulas , Carbonatos , Minerais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA