Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Rev ; 124(17): 10112-10191, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39189449

RESUMO

Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.

2.
Adv Mater ; : e2408367, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300853

RESUMO

Two dimension (2D) transition metal dichalcogenides (TMD) heterostructures have opened unparalleled prospects for next-generation electronic and optoelectronic applications due to their atomic-scale thickness and distinct physical properties. The chemical vapor deposition (CVD) method is the most feasible approach to prepare 2D TMD heterostructures. However, the synthesis of 2D vertical heterostructures faces competition between in-plane and out-of-plane growth, which makes it difficult to precisely control the growth of vertical heterostructures. Here, a universal and controllable strategy is reported to grow various 2D TMD vertical heterostructures through an ammonium-assisted CVD process. The ammonium-assisted strategy shows excellent controllability and operational simplicity to prevent interlayer diffusion/alloying and thermal decomposition of the existed TMD templates. Ab initio simulations demonstrate that the reaction between NH4Cl and MoS2 leads to the formation of MoS3 clusters, promoting the nucleation and growth of 2D MoS2 on existed 2D WS2 layer, thereby leading to the growth of vertical heterostructure. The resulting 2D WSe2/WS2 vertical heterostructure photodetectors demonstrate an outstanding optoelectronic performance, which are comparable to the performances of photodetectors fabricated from mechanically exfoliated and stacked vertical heterostructures. The ammonium-assisted strategy for robust growth of high-quality vertical van der Waals heterostructures will facilitate fundamental physics investigations and device applications in electronics and optoelectronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA